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Problems

1.1 The Forty-Seventh IMO
Ljubljana, Slovenia, July 6-18, 2006

1.1.1 Contest Problems

First Day (July 12)

1. Let ABC be a triangle with incentdr. A point P in the interior of the triangle
satisfies
/PBA+ /PCA= /PBC + ZPCB.

Show thatAP > Al, and that equality holds if and onlyf=1.

2. Let & be a regular 2006-gon. A diagonal &f is calledgood if its endpoints
divide the boundary of” into two parts, each composed of an odd number of
sides of%?. The sides of? are also called good.

Suppose? has been dissected into triangles by 2003 diagonals, noftwhioh
have a common pointin the interior 7. Find the maximum number of isosce-
les triangles having two good sides that could appear in awdnfiguration.

3. Determine the least real numbédrsuch that the inequality
|ab(a® — b?) + be(b? — ¢?) + ca(c? — a%)| < M(a2 + b? + ¢?)?
holds for all real numbera, b andc.

Second Day (July 13)

4. Determine all pairg¢x,y) of integers such that

1+ 2X+ 22X+1 :yz

5. LetP(x) be a polynomial of degre®e> 1 with integer coefficients and l&tbe a
positive integer. Consider the polynomial
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Q(x) = P(P(...P(P(x))...)),
whereP occursk times. Prove that there are at masitegers such thaQ(t) =
t.

6. Assign to each sideof a convex polygor?? the maximum area of a triangle that
hasb as a side and is contained i#. Show that the sum of the areas assigned
to the sides of” is at least twice the area of.

1.1.2 Shortlisted Problems

1. A1 (EST) A sequence of real numbess, a1, az, ... is defined by the formula
air1=[a] {a}, fori>0;
hereag is an arbitrary numbefa] denotes the greatest integer not exceedjng
and{a} = & — [a]. Prove that; = &, for i sufficiently large.
2. A2 (POL) The sequence of real numbexs ai, ay, ... is defined recursively
by
n
an—k
=1 3 o =otorn>

Show thata, > 0 forn> 1.

3. A3 (RUS) The sequencey, Cy, ..., Cn, ... is defined bycg = 1, ¢; = 0, and
Cni2 = Cny1+ Cn for n > 0. Consider the se® of ordered pairgx,y) for which
there is a finite sed of positive integers such that= 3 ;c;¢j, Y= ¥ jcsCj1.
Prove that there exist real numbers3, andM with the following property: An
ordered pair of nonnegative integé€rsy) satisfies the inequalitn < ax+ y <
M if and only if (x,y) € S.

Remark: A sum over the elements of the empty set is assumed to be 0.

4. A4 (SER) Prove the inequality
aia; < n
ai+aj ~ 2(@+ay+---+an)

> aa,

i<] i<]

for positive real numberay, ay, ..., an.
5. A5 (KOR) Leta, b, c be the sides of a triangle. Prove that

vb+c—a n vc+a—b n at+b-c <3
Vbt e-va e+va-vh vatvb-yve o

6. A6 (IRE)'O3 Determine the smallest numbérsuch that the inequality

|ab(a® — b?) + bc(b? — ¢2) + ca(c® — a?)| < M(a2 + b? + ¢%)?

holds for all real numbers, b, c
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7. C1(FRA) We haven > 2 lampsly,...,Lyin arow, each of them being eithemn
or off. Every second we simultaneously modify the state of each Esrollows:
if the lampL; and its neighbours (only one neighbour foe 1 ori = n, two
neighbours for othe)) are in the same state, thenis switched off; — otherwise,
L; is switched on.

Initially all the lamps are off except the leftmost one whiston.

(a) Prove that there are infinitely many integarf®r which all the lamps will
eventually be off.

(b) Prove that there are infinitely many integeffsr which the lamps will never
be all off.

8. C2 (SER)M®? A diagonal of a regular 2006-gon is calledd if its endpoints
divide the boundary into two parts, each composed of an odubeu of sides.
Sides are also regarded as odd diagonals. Suppose the a00tg been dis-
sected into triangles by 2003 non-intersecting diagoifratsl the maximum pos-
sible number of isosceles triangles with two odd sides.

9. C3 (COL) Let Sbe afinite set of points in the plane such that no three of them

are on a line. For each convex polygBrwhose vertices are i, let a(P) be
the number of vertices &, and letb(P) be the number of points &which are
outsideP. Prove that for every real number

Zxa(P)(]_ —x)PP) =1,

where the sum is taken over all convex polygons with verticeés
Remark. A line segment, a point, and the empty set are consideredragxo
polygons of 2, 1, and 0 vertices respectively.

10. C4 (TWN) A cake has the form of amx n square composed of unit squares.
Strawberries lie on some of the unit squares so that eachroalemn contains
exactly one strawberry; call this arrangement
Let Z be another such arrangement. Suppose that every grid géetaith one
vertex at the top left corner of the cake contains no fewamdierries of arrange-
mentZ than of arrangemeny. Prove that arrangemest can be obtained from
</ by performing a number cfvitches, defined as follows:

A switch consists in selecting a grid rectangle with only two stramibs, situ-
ated at its top right corner and bottom left corner, and mgrese two straw-
berries to the other two corners of that rectangle.

11. C5 (ARG) An (n,k)-tournament is a contest with players held irk rounds
such that:
(i) Each player plays in each round, and every two playerg ate®ost once.
(i) If player A meets playeB in roundi, playerC meets playeb in roundi,
and playerA meets playe€C in round j, then playeB meets playeD in
roundj.
Determine all pairgn, k) for which there exists atn, k)-tournament.
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C6 (COL) A holey triangle is an upward equilateral triangle of side length
with n upward unit triangular holes cut out. diamond is a 60 — 120° unit
rhombus. Prove that a holey triandlecan be tiled with diamonds if and only if
the following condition holds: Every upward equilater#itrgle of side lengtk
in T contains at most holes, for 1<k <n.

C7 (JAP) Consider a convex polyheadron without parallel edges atigowi
an edge parallel to any face other than the two faces adjazéntCall a pair
of points of the polyheadroantipodal if there exist two parallel planes passing
through these points and such that the polyheadron is cattdietween these
planes.

Let A be the number of antipodal pairs of vertices, andBdte the number of
antipodal pairs of midpoint edges. Determine the diffeeefae- B in terms of
the numbers of vertices, edges, and faces.

G1 (KOR)'™MO1 | et ABC be a triangle with incentdr. A point P in the interior
of the triangle satisfieg PBA+ /PCA = /PBC + ZPCB. Show thatAP > Al
and that equality holds if and only i coincides withl .

G2 (UKR) Let ABC be a trapezoid with parallel sidé®8 > CD. PointsK and
L lie on the line segment&B andCD, respectively, so thadk /KB = DL/LC.
Suppose that there are poiRtandQ on the line segmemtL satisfyingZAPB =
/BCD andZCQD = ZABC. Prove that the point8, Q, B, andC are concyclic.

G3 (USA) Let ABCDE be a convex pentagon such thaBAC = ZCAD =
/DAE and Z/ABC = ZACD = ZADE. The diagonal8D andCE meet atP.
Prove that the lin@P bisects the sid€D.

G4 (RUS) A point D is chosen on the sidaC of a triangleABC with /C <
/A < 9 in such a way thaBD = BA. The incircle ofABC is tangent tcAB and
AC at pointsK andL, respectively. Led be the incenter of triangIBCD. Prove
that the lineKL intersects the line segmed at its midpoint.

G5 (GRE) In triangle ABC, let J be the center of the excircle tangent to side
BC at A; and to the extensions of sidé€ and AB at B; andC;, respectively.
Suppose that the line%;B; andAB are perpendicular and intersectatLet E

be the foot of the perpendicular fra@j to line DJ. Determine the angle$sBEA;
andZAEB;.

G6 (BRA) Circles wy and w, with centersO; andO, are externally tangent
at pointD and internally tangent to a circl® at pointsE andF, repsectively.
Linet is the common tangent @b, andwy, atD. Let AB be the diameter ofo
perpendicular td, so thatA, E, andO; are on the same side tbfProve that the
linesAO;, BO,, EF, andt are concurrent.

G7 (SVK) In an triangleABC, let Mg, My, M¢, be resepctively the midpoints of
the sidesBBC, CA, AB, andTj, Ty, Tc be the midpoints of the ard3C, CA, AB of
the circumcircle ofABC, not couning the opposite vertices. Faf {a,b,c} let
w be the circle withV; T; as diameter. Lep; be the common external tangent to
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wj, wx ({i, ],k} = {a,b,c}) such thaiw lies on the opposite side @& thanw;,
w do. Prove that the lineg,, pp, pc form a triangle similar téABC and find the
ratio of similitude.

G8 (POL) Let ABCD be a convex quadrilateral. A circle passing through the

pointsA andD and a circle passing through the poiB&ndC are externally
tangent at a poir®® inside the quadrilateral. Suppose tkd@AB + /PDC < 90°
andZPBA+ ZPCD < 9(°. Prove thaAB + CD > BC + AD.

G9 (RUS) PointsAg, By, C; are chosen on the sid8€, CA, AB of a triangle
ABC respectively. The circumcircles of trianglaB;Cy, BC1A1, CA1B; intersect
the circumcircle of triangl&BC again at point#\,, B,, C, respectively £, # A,

B, # B, C, # C). PointsAgz, Bz, C3 are symmetric tdA;, By, C; with respect
to the midpoints of the sideBC, CA, AB, respectively. Prove that the triangles
A;B,C, andAzB3Cs are similar.

G10 (SERJMO6 Assign to each sidb of a convex polygonZ the maximum
area of a triangle that hdsas a side and is contained /. Show that the sum
of the areas assigned to the sides#fs at least twice the area ¢P.

N1 (USA)MO4 Determine all pairgx,y) of integers satisfying the equationt1
XXy 22X+l — y2_
N2 (CAN) Forxe (0,1) lety € (0,1) be the number whosath digit after the

decimal point is the &h digit after the decimal point af. Show that ifx is
rational then so iy.

N3 (SAF) The sequencé(l), f(2), f(3), ... is defined by

-3 5 ).

where[x] denotes the integral part &f
(a) Prove thaf (n+1) > f(n) infinitely often.
(b) Prove thatf (n+ 1) < f(n) infinitely often.

N4 (ROM)MOS Let P(x) be a polynomial of degrea > 1 with integer co-
efficients and letk be a positive integer. Consider the polynom@(x) =
P(P(...P(P(x))...)), whereP occursk times. Prove that there are at mast
integers such thaQ(t) =t.

N5 (RUS) Find all integer solutions of the equation

=y -1

N6 (USA) Leta > b > 1 be relatively prime positive integers. Define theght
of an integerc, denoted byw(c) to be the minimal possible value ¢f + |y|
taken over all pairs of integessandy such thatax+ by = ¢. An integerc is
called alocal champion if w(c) > w(c+a) andw(c) > w(c=+ b). Find all local
champions and determine their number.

x'—1
Xx—1
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30. N7 (EST) Prove that for every positive integeithere exists an integen such
that 2"+ mis divisible byn.
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2 Solutions

2.1 Solutions to the Shortlisted Problems of IMO 2006

. Ifagp > 0thena > 0 for each and[a;1] < aj11=[a|{a} < [a] unlesga] =0.

Eventually 0 appears in the sequef&éand all subsequet’s are 0.

Now suppose thatg < 0; then alla; < 0. Suppose that the sequence never
reaches 0. Thefg] < —1 and so K [a1+1] > a+1 = [a]{ai} > [ai], SO the se-
qguencela] is nondecreasing and hence must be constant from some term on
[a] = c < 0 fori > n. The defining formula becomes; 1 = ¢{aj} = c(a —¢)
which is equivalent td;, 1 = ch;j, whereb; = a; — % Since(by) is bounded,

we must have either= —1, in which case&; ;1 = —a; — 1 and hencey > = &,

orbj = 0 and thus = % foralli > n.

. We use induction on. We havea; = 1/2; assume that > 1 anday, ...,an > 0.

The formula gives ugn+1) 3 ;
n+ 1 and subtracting yields

n n+1 n+2
(n+2)an+l_kzl(n—k+1_ n—k+2)ak

m#m = 1. Writing this equation fon and

which is positive as so is the coefficient at eagh
Remark. By using techniques from complex analysis such as contaegials
one can obtain the following formula for> 1:

® dx

= > 0.
o= X712 +In?(x— 1))

—1 —1
. We know that, = £~ —¥"" whereg = 1448 andy = 15 are the roots of

fp:w
t>—t— 1. Sincec,_1/c, — —, takinga = ¢ andB = 1 is a natural choice. For
every finite setl C N we have

1= < w2n+1<wX+y: wj71< < wZn:(p'
nZO ng nZO

Thusm= —1 andM = g@is an appropriate choice. We now prove that this choice
has the desired properties by showing that, for anye N with —1 < K =

X +y < @, there is afinite set C Nsuch thaK =y ¢, Wi

Given suchK, there are sequences< --- < iy with 2 + ... + 'k = K (one
such sequence consistsyferos andk ones). Consider all such sequences of
minimum lengthn. Sincey™ + g™ = ™2, these sequences contain no two
consecutive integers. Order such sequences as folloiys: If for L <k <t and

it < jt, then(iy) < (jr). Consider the smallest sequer{gg;_, in this ordering.
We claim that its terms are distinct. Sincg/2= 1+ (%, replacing two equal
termsm, mby m—2,m+ 1 form> 2 would yield a smaller sequence, so only 0 or
1 can repeat among the Buti; = i 1 = 0 impliesy, ¢/'" > 2+ S5 ¢ +3 =g,
while it = it11 = 1 similarly impliesy, Y'r < —1, so both cases are impossible,
proving our claim. Thud = {iy,...,in} is a required set.
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4. Since & = 1 (a+b— gfg ) the left hand side of the desired inequality
equals 2
aiay (ai —ay)?
A= = .
i; i+ ai 4 Z I<J 8 +a;
The right hand side of the inequality is equal to
_nyaa n-1 (a —a;)?

ézak 4 Z __i<17.

34 aJ)

Now A < B follows from the trivial mequalltyz a+a >y

. Letx=+vb+,/c—a,y=C+a—vb,andz= /a+vb— \/E. All of these
numbers are positive becauagh, ¢ are sides of a triangle. Thdnt-¢c—a =
x* — 3(x—y)(x—2) and

_Vbic—a [, (xyy-9 _, x-y(x-2
Vb+C—ya 2x2 = 4x2 :

Now it is enough to prove that

X2(X=Y)(x=2) +y Ay-2)(y—x) +2Z *(z—x)(z—-y) > 0
which directly follows from Schur’s inequality.

. Assume w.l.o.g. thas > b > c. The LHS of the inequality equals = (a—
b)(b—c)(a—c)(a+b+c). From(a—b)(b—c) < 3(a—c)?we getlL < F(a—
c)3la+b+c|. The inequalityfa— c)? < 2(a—b)?+42(b— c) implies(a—c¢)? <
2[(a—b)2+ (b—c)?+ (a—c)?. Therefore

V2 ((a—b)2+ (b—c)?+ (a—c)2>3/2(
2 3

a+b+c).

Finally, the mean inequality gives us

Lo V2 ((a—b)2+(b—c)2+(a—c)2+(a+b+c)2)2

- 2 4

9\/—(a +b?+¢?)2.

The equality is attained if and only#—b=b—cand(a—b)?+ (b—c)?+ (a—
c)? = 3(a+b+c)?, which leads taa = (1+ %) b andc = (1— %) b. Thus
M= 2.

Second solution. We havel = |(a—b)(b—c)(c—a)(a+b+c)|. Assume w.l.0.g.

thata+b+c=1 (the casea+ b+ c= 0 s trivial). The monic cubic polynomial
with the rootsa— b, b— candc — ais of the form
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P(x) =X+ ax+1, q= %— g(a2+b2+c2), r=—(a—b)(b—c)(c—a).

Then M = maxr /(T) . Since P(x) has three real roots, its discrimi-
nant (q/3)% + (r/2)2 must be positive, so2 > —£g®. ThusM? < f(q) =

4
— 503/ (1’—32‘*) . Functionf attains its maximum¥/2° atq = —3/2, soM <
93—\/25. The case of equality is easily computed.
Third solution. Assume tha&?+b?+ ¢ = 1 and writeu= (a+b+c)/v/3,v=
(a+eb+£2%¢)//3,w= (a+ b+ £c)/+/3, wheres = /3, Then analogous

formulas hold fom, b, cin terms ofu, v, w, from which one directly obtains|?+
V]2 +|wj?=a?+b?+c?>=1and

a+b+c=v3u, |a—b/=|v—ew|, l[a—c|=|v—e%w|, b—c|=|v—w|

ThusL = v/3ul[v3 — w3 < v3Ju[(IV3 + Wf?) < /3u[2(1 - |u]2)® < $2. Itis
easy to trace back b, c to the equality case.

. (a) We show that fon = 2¥ all lamps will be switched on in— 1 steps and off

in n steps. Fok = 1 the statement is true. Suppose it holds for séraed
letn=2*1; denotel = {Ly,...,Lx} andR= {Ly1,...,Lpk:1}. The first

2% 1 steps are performed without any influence on or from the $afrgm

R; thus after # — 1 steps the lamps ih are on and those fromR are off.
After the -th stepLx andL_ 4 are on and the other lamps are off. Notice
that from nowL andR will be symmetric (i.eL; andL;1_; will have the
same state) and will never influence each other. Sihsarts with only the
leftmost lamp on, in ®steps all its lamps will be off. The same will happen
to L. There are 2+ 2X = 2“1 steps in total.

(b) We claim that fon = 2K+ 1 the lamps cannot be switched off. After the first
step onlyL; andL; are on. According to (a), aftek2- 1 steps all lamps but
L will be on, so after the '2th step all lamps will be off except fdr,_1
andLy. Since this position is symmetric to the one after the firsp sthe
procedure will never end.

. We call a triangleodd if it has two odd sides. To any odd isosceles triangle

AAj A we assign a pair of sides of the 2006-gon. We may assumé& thjat=
j—1i>0is odd. A side of the 2006-gon is said ltelong to triangle AjAjAx

if it lies on the polygonal lineAA; 1 ... Ag. At least one of the odd number of
sidesAiA 11, ...,Aj_1Aj and at least one of the sid&gA;, 1,..., A 1A« do not
belong to any other odd isosceles triangle; assign thosesiges toAAA;A.
This ensures that every two assigned pairs are disjointethie there are at
most 1003 odd isosceles triangles.

An example with 1003 odd isosceles triangles can be attaihed the diagonals
Aok, 2 are drawn folk = 0,...,1002, wherédg = Azpos

. The numbec(P) of points insideP is equal ton — a(P) — b(P), wheren = |S].

Writing y = 1 — x the considered sum becomes
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5P ey Z%( ) B(P)+iyB(P) +c(P)~
‘Zka (e

Here the coefficient at<y" X is the sumzp( () )) which equals the number

of pairs(P,Z) of a convex polygor® and ak-element subset of Swhose con-
vex hull isP, and is thus equal tQ[:) Now the required statement immediately
follows.

. Denote by, (R) the number of strawberries of arrangemeninside rectangle

R. We write.o? < £ if for every rectangl& containing the top left cornéd we
haveSz(Q) > S/ (Q). In this ordering, every switch transforms an arrangement
to a larger one. Since the number of arrangements is finigeeiough to prove
that whenevery < % there is a switch taking to ¥ with ¥ < 2. Consider the
highest rowt of the cake which differs in7 and#; let X andY be the positions

of the strawberries in in .7 and % respectively. Clearly is to the left from

X and the strawberry of7 in the column ofY is belowY. Now consider the
highest strawberr’ of .27 belowt whose column is betweefiandY (including

Y). Let s be the row ofX’. Now switchX, X’ to the other two verticeg,Z’ of

the corresponding rectangle, obtain- O P

ing an arrangements. We claim
that ¥ < 4. It is enough to ver-
ify that Sy(Q) < Su(Q) for those
rectanglesQ = OMNP with N ly- Mio==~
ing insideXZX'Z'. Let Q' = OMN; P, S @) )
be the smallest rectangle contain- X! z
ing X. Our choice ofs ensures that
S¢(Q) =Sy (Q) > S5(Q) > S»(Q),

as claimed.

P

|

1 X

r'Jo
Ll LdN

N 1

Ol<
OIN

. Letq be the largest integer such thdt|2r. We prove that aitn, k)-tournament
exists if and only ifk < 29.

The firstl rounds of an(n,k)-tournament form artn,l)-tournament. Thus it is
enough to show that &n,29 — 1)-tournament exists and (@, 29)-tournament
does not.

If n= 29, we can label the contestants and rounds by elements of thtved
groung. If contestantx andx+ j meet in the round labelled it is easy to
verify the conditions. Ifn = 29p, we can divide the contestants inpadisjoint
groups of @ and perform g2% 29 — 1)-tournament in each, thus obtaining an
(n,29—1)-tournament.

For the other direction l&% be the graph of players with edges between any two
players who met in the firstrounds. We claim that the size of each connected
component of4 is a power of 2. For = 1 this is obvious; assume it holds fior
Suppose that the componeftandD merge in thei + 1)-th round. Then some
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c € Candd € D meet in this round. Moreover, each playeCimeets a player in
D. Indeed, for every’ € Cthereis a patle=co,C1,...,C = ¢ with ¢jCj;1 € 4;
then ifd; is the opponent of; in the (i + 1)-th round, condition (ii) shows that
eachd;dj 1 € 4, sodi € D. Analogously, all players ilD meet players iiC, so
|C| = |D|, proving our claim. Now if there areé®2Zounds, every component has
size at least2+ 1 and is thus divisible by®*, which is impossible if 271 { n.

LetU andD be the sets of upward and downward unit triangles, respgtiv
Two triangles araeighborsif they form a diamond. FoA C D, denote byF (A)
the set of neighbors of he elementsfof

If a holey triangle can be tiled with diamonds, in every upsMriangle of sidd
there ard? elements oD, so there must be at least as many elements and
at most holes.

Now we pass to the other direction. It is enough to show thelitiom (ii) of
the marriage theorem: For every sétc D we have|F (X)| > |X|. Indeed, the
theorem claims that then we can "marry” the elementB afith the elements
of U, which means exactly coveringby diamonds. So, assume to the contrary
that|F (X)| < |X| for some seX. Note that two elements & having a common
neighbor must share a vertex; this means that we can focusrorected setX.
Consider an upward triangle of side 3. It contains three et@mofD; if two of
them are irX, adding the third one t& increase$ (X) by at most 1, s¢F (X)| <
|X| still holds. Continuing this procedure we will end up withet X forming
an upward sub-triangle af and satisfyingF (X)| < |X|, which contradicts the
conditions of the problem. This contradiction proves {fdiX)| > |X| for every
setX.

Consider a polyhedrozZ with v vertices,e edges and faces. Consider the
map o to the unit spher& taking each vertex, edge or fageof &2 to the set
of outward unit normal vectors (i.e. points &@ to the support planes of”
containingx. Thus g maps faces to points o8 edges to shorter arcs of big
circles connecting some pairs of these points, and vertecepherical regions
formed by these arcs. These points, arcs and regiorS fanm a "spherical
polyhedron'¥.

We now translate the conditions of the problem into the |lagguof¢. Denote
by X the image ok in reflection in the center d&. No edge of%? being parallel
to another edge or face means that the big circle of any eddfes does not
contain any verte¥ non-incident tee. Also note that vertice8 andB of &2 are

antipodal if and only ifo(A) ando (B) intersect, and that the midpoints of edges
aandb are antipodal if and only i&¥(a) anda (b) intersect.

Consider the unior¥# of ¢ and¥. The faces of# are the intersections of faces
of 4 and¥, so their number equals®2Similarly, the edges o¥ and¥ have B
intersections, s& has 2+ 4B edges and 2+ 2B vertices. Now Euler’s theorem

for # gives us 2+4B+ 2= 2A+ 2f + 2B, and thereford —B=e— f + 1.

The condition of the problem implies thaPBC + Z/PCB = 90° — a/2, i.e.
/BPC =90° + a/2 = ZBIC. ThusP lies on the circumcircleo of ABCI. It
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is well known that the centévl of w is the second intersection &f with the
circumcircle of AABC. ThereforeAP > AM — MP = AM — MI = Al, with equal-
ity if and only if P=1.

The relationAK /KB = DL/LC implies thatAD,BC and KL have a common
point O. Moreover, since/APB = 180° — ZABC and #/DQC = 180° — Z/BCD,
line BC is tangent to the circleAPB andCQD. These two circles are homothetic
with respect toO, so if OP meets circleAPB again atP’, we have/PQC =
/PP'B = /PBC, showing thaP,Q, B,C lie on a circle.

Let the diagonal&C andBD meet atQ andAD andCE meet atR. The quadri-
lateralsABCD and ACDE are similar, soAQéQC AR/RD Now if AP meets
CD atM, the Ceva theorem gives l% =% RD—

LetM be the point orAC such thatIM || KL. It is enough to prove th&AM =

2AL.

From /BDA = a we obtain that”JDM = 90° — % = /KLA = ZIMD; hence
JM = JD and the tangency point of the incircle &fBCD with CD is the mid-
pointT of segmenMD. ThereforeDM = 2DT =BD +CD —-BC=AB—-BC+

CD, which gives us

AM =AD+DM =AC+AB—-BC=2AL.

Let A1B; and CJ intersect atK.
ThenJK is parallel and equal t€,D
and DCl/ClJ = JK/JBl = JBl/JC =
C1J/JC, so the right triangleDCyJ
and C,JC are similar; henceC,C L
DJ. Thus E belongs toCC;. Now
the pointsA;,B; and E lie on the
circle with diameterCJ. Therefore  A° C1

/DBA; = Z/A1CJ = ZAED, implying

thatBEA;D is cyclic; hence/A1EB = 90°. Likewise,ADEB; is cyclic because
/EB1A= Z/EJC = ZEDC,, sS0oZAEB; = 9(°.

Second solution. The segmentdA;,JB1,JC; are tangent to the circles with di-
ameters\ B, ABy,C;1D. SinceJA? = JBZ = JC? = JD - JE, E lies on the first two
circles (with diameter$yB andAB;), so/AEB; = ZA1EB = 90°.

The homothety with cent& mapping
w, to w mapsD to B, soD lies onBE;

analogouslyD lies onAF. Let AE and
BF meet at poinC. The linesBE and
AF are the altitudes of triangsBC, so
D is the orthocenter ard lies ont. Let

the line througiD parallel toAB meet
AC atM. The center®; andO, are the
midpoints ofDM andDN respectively.
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20.

21.

22.

2 Solutions

We have thus reduced the problem to a classical triangle gggrproblem:
If CD and EF intersect atP, we should prove that point&, O; and P are
collinear (analogously, so ai O,, P). By the Menelaus theorem for triangle
CDM, this is equivalent toge = S, which is again equivalent t§5 = S5
(becausM || AB), whereK is the foot of the altitude fron€ to AB. The last
equality immediately follows from the fact that the palrD; P,K are harmoni-
cally adjoint.

Letl be the incenter oAABC. It is well known thatT,T. and T T, are the
perpendicular bisectors of the segmeBtsandCI respectively. Lefl, T, meet
AC atP andw, atU, and letT, T meetAB atQ and . atV. We have/BIQ =
ZI1BQ = ZIBC, solQ || BC; similarly IP || BC. HencePQ is the line through
parallel toBC.

The homothety fronT, mappingw, to the circumcirclew of ABC maps the
tangent to w, atU to the tangent tav at T, which is parallel toBC. It follows
thatt || BC. Lett meetAC at X. SinceXU = XM, andZPUM;, = 90°, X is the
midpoint of PMy,. Similarly, the tangent tox. atV meetsQM; at its midpointy.
But sinceXY || PQ || MpM¢, pointsU, X,Y,V are collinear, sa coincides with
the common tangent,. Thusp, runs midway betweehandMyMc. Analogous
conclusions hold fopy and pc, so these three lines form a triangle homothetic
to the triangleMaMyM, from centerl in ratio% which is therefore similar to the
triangleABC in ratio 1.

The following proposition is easy to prove:
Lemma. For an arbitrary poinX inside a convex quadrilater&BCD, circles
ADX andBCX are tangent aX if and only if Z/ADX + /BCX = ZAXB.
Let Q be the second intersection point of the circd&P andCDP (we assume
Q # P; the opposite case is similarly handled). It follows frone ttonditions
of the problem tha@ lies inside quadrilateraABCD (since /BCP + /BAP <
180, C is outside the circumcircle &APB; the same holds fdp). If Q is inside
AAPD (the other case is similar), we ha¥®QC = /BQP+ /PQC = /BAP+
/CDP < 90°. Similarly ZAQD < 90°. Moreover,/ADQ + /BCQ = ZADP +
/BCP = ZAPB = ZAQB implies that circlesADQ andBCQ are tangent a@.
Therefore the interiors of the semicircles with diame#bsandBC are disjoint
and if M, N are the midpoints oAD and BC respectively, we haveNN >
AD + BC. On the other hand,N < AB+CD becauseA + CD = ZW, and
the statement of the problem immediately follows.

We work with oriented angles modulo T8®or two linesa,b we denote by
Z(I,m) the angle of counterclockwise rotation transformimgo b; also, by
ZABC we mear/(BA,BC).

Itis well-known that the circleB;C;, BC;A; andCA;1B; have a common point,
sayP. Let O be the circumcenter &BC. Denote/PB,C = /PC;A= /PA1B=
¢. Let A;P, BoP,CoP meet the circléABC again athy, B4, Cy, respectively. Since
LAPAA = /PAA= /PCi A= ¢ and thus/A4OA = 2¢ etc, AABC is the image
of AA4B4C4 under rotationZ aboutO by 2¢.
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Therefore Z(AB4,PCy) = ZB4AB +
ZLACP = ¢ — ¢ =0, soAB,y || PC;.
Let PC; intersectA4B,4 at Cs; define
As,Bs analogously. ThervBsCsP = ¢,
/A4BsA= ¢, S0OAB4CsCy is anisosce- |/
les trapezoid witlBBC3 = AC; = B4Cs. \
Similarly, AC3 = A4Cs, soCz is the im- By, 7
age ofCs underZ; similar statements A
hold for As,Bs. Thus AA3B3Csz =
AAsBsCs. It remains to show that
AA585C5 ~ AAZBZCZ.

We have seen thatA4BsP = /B4CsP,

which implies thaP lies on the circleA4BsCs. AnalogouslyP lies on the circle
C4AsBs. Therefore

ZPAoByCy = ZArBoBs + ZB4aBCor = ZA2A4Bs + /B4C4Co
= /PACs5 + LAsC4P = £/PBsCs + LAsBsP = ZAsBsCs,

and similarly for the other angles, which is what we wanted.

LetS be the area assigned to sidg\ 1 of polygon % = A; ... A, of areaS.

We start with the following auxiliary statement.

Lemma. Atleastone of the ared&, ..., S, is not smaller thang/n.

Proof. It suffices to show the statement for evenThe case of an odd will
then follow immediately from this case applied on the degateel 21-gon
ALA; ... AnA,, whereA! is the midpoint ofAA ;1.

Letn=2m. Fori =1,2,...,m, denote byl; the area of the regio®?; inside
the polygon bounded by the diagon&@#\ni, Air1Am:ir1 and the sides
AA L1, Am+iAncic1. We observe that the region®; cover the entire poly-
gon. Indeed, leX be an arbitrary point inside the polygon, to the left (with-
out loss of generality) of the rafq A, 1.

Then X is to the right of the ray Amis mi2 Amid
Am:1A1, SO there is & such thatX g
is to the left of rayAcAm and to
the right of rayA; 1A my1, 1.€.X €
Py Itfollows thatTy+---+ T > S
hence at least on§ is not smaller
than 25/n, sayT; > 2S/n.

Let O be the intersection point of
A1Am1 and AxAn.2, and let us
assume without loss of generality
thatSqlAzo > SAm+1Am+20 andA;0 > OAn. 1. Then we hav&, > SAlAzAerz =
SAlAZO + SAlAerzO > SAlAZO + SAm+1Am+20 =T > ZS/n, which proves the
lemma.

A Ao
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2 Solutions

If, contrary to the assertior[% < 2, we can choose rational numbejs=
2m;/N with N = my + - -- + m, such thatg; > S/S. However, considering the
given polygon as a degeneratidehjon obtained by division of sid&jA;; into

m; equal parts for eachand applying the lemma we obtafym > 2S/N, i.e.

S/S> qi for somei, a contradiction.

Equality holds if and only if# is centrally symmetric.

Second solution. We say that verteX is assigned to sideof a convex (possibly

degenerate) polygof’ if the triangle determined by andV has the maximum

areaS; among the triangles with sidecontained in%?. Denoteo () = 5 ,&
ando(Z) = o(L) — 2[Z]. We use induction on the numbepf pairwise non-
parallel sides of”” to show thaid (%) > 0 for every polygonZ?. This is obvi-

ously true fom= 2, so letn > 3.

There exist two adjacent sidé8 andBC whose respective assigned vertitks

andV are distinct. Let the lines through andV parallel toAB andBC respec-

tively intersect at poinX. Assume w.l.0.g. that there are no sidesZflying

onUX andV X. Call the sides and vertices 6 lying within the triangldJV X

passive (excluding verticet) andV). It is easy to see that no passive vertex is

assigned to any side o and that verte»B is assigned to every passive side.

Now replace all passive vertices 6f by X, obtaining a polygor??’. VertexB

is assigned to sidd$X andVX or &2, so the sum of areas assigned to passive

sides increases by the ar8af the part of quadrilateraBUXV lying outside

Z; the other assigned areas do not change. Bhimereases b. On the other

hand, the area of the polygon also increaseS,lsp é decreases b$.

Note that the change fro? to &' decreases the number of nonparallel sides.

Thus by the inductive hypothesis we ha®e??) > §(<%') > 0.

Third solution. To each convexi-gon &2 = AjA,... A, we assign a centrally

symmetric 2-gon 2, called theassociate of &2, as follows. Attach the2vec-

tors+AjA; ;1 at acommon origin and label thdm, - - - , by, counterclockwise so
thatb,j = —bj for 1 <i < n. Then take2 to be the polygoiB:B;... B, with

BiBi 1 = b;j. Denote byg; the side of%? corresponding tdy; (i =1,...,n).

The distance between the parallel siBeB; . 1 andByiBn.i+1 0f 2 equals twice

the maximum height of” to the sides;. Thus, ifOis the center of2, the area of

ABiBi+10 (i =1,...,n) is exactly the are§ assigned to sida; of &; therefore

[2] =23 S. Itremains to show thal( ) = [2] — 4[Z?] > 0.

(i) Suppose that” has two parallel sides anda;, wherea; > & and remove
from it the parallelograr® determined by and a part of side;. We obtain
a polygon2?’ with a smaller number of nonparallel sides. Then the associa
of & is obtained from2 by removing a parallelogram similar Bin ratio
2 (and with area four times that 8f); thusd(2?') = d(2?).

(i) Suppose that there is a sithe (i < n) of 2 such that the sum of the angles
at its endpoints is greater than I8&xtend the pairs of sides adjacentio
andby to their intersectionsl andV, thus enlarging? by two congruent
triangles to a polygo®?’. Then.2’ is the associate of the polyga#’ ob-
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tained from<? by attaching a triangle congruentBpB; ;U to the sides;.

Therefored(4?’) equaldd(£?) minus twice the area of the attached triangle.
By repeatedly performing the operations (i) and (ii) to gy & we will even-
tually reduce it to a parallelograi, thereby decreasing the value af Since
d(E) = 0, it follows thatd(£?) > 0.
Remark. Polygon2 is the Minkowski sum of”? and a polygon centrally sym-
metric to #2. Thus the inequality.2] > 4[] is a direct consequence of the
Brunn-Minkowski inequality.

Obviouslyx > 0. Forx = 0 the only solutions ar¢0,+2). Now let (x,y) be
a solution withx > 0. Assume w.l.o.g. thay > 0. The equation rewritten as
(14 2¢1) = (y—1)(y+ 1) shows that one of the factoyst 1 is divisible
by 2 but not by 4 and the other by2 but not by Z; hencex > 3. Thusy =
2-Im+ ¢, wherem is odd ands = +1. Plugging this in the original equation
and simplifying yields

22(mP—8)=1—em. (%)
As m= 1 is obviously impossible, we have > 3 and hence = —1. Now (x)
gives us 2n? — 8) < 1+ m, implying m= 3 which leads tx = 4 andy = 23.
Thus all solutions ar€0, +2) and(4,+23).

If x is rational, its digits repeat periodically starting at gopoint. If n is the
length of the period of, the sequence, 22,23, . .. is eventually periodic modulo
n, so the corresponding digits &f(i.e. the digits ofy) also make an eventually
periodic sequence, implying theis rational.

Consideg(n) = [§] +[3] +---+[2] = nf(n) and definey(0) = 0. Since for any
k the differencey] — [”;kl] equals 1 ifk dividesn and O otherwise, we obtain
thatg(n) = g(n—1) + d(n), whered(n) is the number of positive divisors of
n. Thusg(n) =d(1) +d(2) +---+d(n) and f (n) is the arithmetic mean of the
numbersl(1),...,d(n). Therefore, (a) and (b) will follow if we show that each of
d(n+1) > f(n) andd(n+1) < f(n) holds infinitely often. Bud(n+ 1) < f(n)
holds wheneven+ 1 is prime, andi(n+ 1) > f(n) holds wheneved(n+1) >
d(1),...,d(n) (which clearly holds for infinitely many).

We first show that every fixed poirtof Q is in fact a fixed point ofP o P.
Consider the sequence giveny= x andx;.1 = P(x) fori > 0. Assumex, =
Xo. We know thatu — v dividesP(u) — P(v) for every two distinct integers, v.
In particular,

di = X1 =X | P(Xi+1) = P(X) = X2 = Xiy1 = dija
for all i, which together withdy = do implies |dg| = |d1]| = --- = |dk|. Suppose
thatd; = dp = d # 0. Thend, = d (otherwisexs = x; andxg will never occur
in the sequence again). Similartlg = d etc, and hencr = xg + id # xq for all
i, a contradiction. It follows thad; = —dg, SOX> = Xg as claimed. Thus we can
assume tha) = Po P.

If every integett with P(P(t)) =t also satisfie®(t) =t, the number of solutions
is clearly at most del§ = n. Suppose thaP(t;) =tp, P(ty) =11, P(t3) =t4 i
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28.

29.

2 Solutions

P(t4) = ts, wheret; # to 34 (but not necessarilys # t4). Sincet; —t3 divides
t, —t4 and vice versa, we conclude that-tz = +-(t —t4). Assume that; —t3 =
to—t4,i.e.t1 —th =t3—tg = u#£0. Since the relation —t; = +(t, —t3) similarly
holds, we obtairt; — t3 + u = +(t; — tz3 — u) which is impossible. Therefore,
we must have; —t3 = t4 —tp, which gives usP(t;) +t; = P(t3) +t3 = c for
somec. It follows that all integral solutionsof the equatioP(P(t)) =t satisfy
P(t) +t = c, and hence their number does not exceed

Every prime divisop of 3= = =x84 ...+ x+1is congruent to 0 or 1 modulo
7. Indeed, Ifp | x—1, then’;j =1+---+1=7 (modp), sop = 7; otherwise
the order ofx modulop is 7 and hence@ = 1 (mod 7). Therefore every positive
divisord of 2=~ X = satlsflesd Oor1(mod 7).

Now supposéx y) is a solution of the given equation. Singe- 1 andy* +y3 +
y>+y+1divideX=t =y>— 1, we havey=1 or 2 andy* +y* +y2 +y+1=0

or 1 (mod 7). Howevely = 1 or 2 implies thay’ +y*+y?+y+1=5or 3 (mod
7), which is impossible.

All representations ofi in the formax+ by (x,y € Z) are given by(x,y) =
(%o + bt,yo — at), wherexg,yo are fixed and € Z is arbitrary. The following
lemma enables us to determiwé).

Lemma. The equalityw(ax+ by) = |x| + |y| holds if and only if:

(i) &2 <y< &P andx>y— 2 or
(i) —%P <y<aPandxeZ; or
(i) 2P <y< 2P andx<y+ &P,

Proof. Assume w.l.0.g. thag > 0. We havew(ax+ by) = |x| +yif and only if
[x+b|+|y—a| > |x| +yand|x—Db|+ (y+a) > [x| +y, where the latter is ob-
viously true and the former clearly impligs< a. Then the former inequality
becomesx+b| — [x| > 2y —a. We distinguish three cases:yif< &2 b then
2y —a < b and the previous inequality always holds; f52 <y g alb jt
holds if and only ifx >y — 25P; and fory > 22 it never holds.

Now letn = ax+ by be a local champion wittv(n) = |x| + |y|. As in lemma, we

distinguish three cases:

(i) &2 <y< &L Thenx+1>y— 2P by the lemma, se(n+a) = [x+1|+y
(because+a=a(x+ 1) +by). Sincew(n+a) < w(n), we must have < 0.
Likewise,w(n—a) equals eithejx— 1| +y=w(n)+1or|x+b—1/+a-y.
The conditiorw(n — &) < w(n) leads tox < y— 5=1; hencex =y — [25P]
andw(n) = [252]. Noww(n—b) = —x+y—1= w( ) 1 andw(n+b) =
(x+b)+(a—1-y)=a+b—-1- [a“’] <w(n), sonis a local champion.
Conversely, everyi= ax-+bywith 252 <y < &P andx=y— [2]isalocal
champion. Thus we obtalm— 1 local champions which are all distinct.

(i) |y < a—gb. Now we conclude from the lemma thatn — a) = [x— 1| + |y

andw(n+a) = |x+ 1| +|y|, and at least one of these two values exceeds

w(n) = |x| + |y|. Thusnis not a local champion.
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(iii) —%b <y< —a%b. By takingx,y to —x, —y this case is reduced to case (i),
so we again have— 1 local champions = ax+ by with x =y + [%b].

Itis easy to check that the sets of local champions from q@sasd (iii) coincide

if a andb are both odd (so we haJe— 1 local champions in total), and are

otherwise disjoint (then we havél2— 1) local champions).

We shall show by induction anthat there exists an arbitrarily largesatisfying
2™ = —m(modn). The case = 1 is trivial; assume that > 1.

Recall that the sequence of powers of 2 moduleeventually periodic with the
period dividing¢ (n); thus Z = 2¥ whenevex =y (mod ¢ (n)) andx andy are
large enough. Let us considerof the formm= —2 (mod n¢(n)). Then the
congruence 2 = —m (modn) is equivalent to 2 = 2X (modn), and this holds
whenever-2K = m= k (mod ¢ (n)) andm,k are large enough. But the existence
of mandk is guartanteed by the inductive hypothesisggn), so the induction

is complete.
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notaticsedtheory, algebra, logic,
geometry (including vectors), analysis, number theorgl(ding divisibility and
congruences), and combinatorics. We use this notatiorglilye

We assume familiarity with the basic elements of the gamédets (the movement
of pieces and the coloring of the board).

The following is notation that deserves additional clasfion.

o A(A,B,C), A—B—C: indicates the relation dfetweenness, i.e., thatB is be-
tween A and C (this automatically means th#, B,C are different collinear
points).

o A=I1Nl,: indicates thaf is the intersection point of the linésandl,.

o AB: line throughA and B, segmentAB, length of segmenfB (depending on
context).

o [AB: ray starting inA and containindg.
(AB: ray starting inA and containindg, but without the poinA.
(

o [AB]: closed intervaAB, segmenfB, (AB) U{A,B}.

o (AB]: semiopen intervahB, closed aB and open af, (AB) U {B}.
The same bracket notation is applied to real numbers,[a,8),= {x|a<x<

b}.
o ABC: plane determined by poings B, C, triangle ABC (AABC) (depending on
context).

AB): open intervalAB, set of points betweef andB.

o [AB,C: half-plane consisting of linéB and all paoints in the plane on the same
side of AB asC.

o (AB,C: [AB,C without the lineAB.
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D —
o (@, b),a- b:scalar product ol and b .

o a,b,c a,p,y: the respective sides and angles of triarBE (unless otherwise
indicated).

o k(O,r): circlek with centerO and radius.
o d(A, p): distance from poinA to line p.

© SaAy A [A1A2. . Ay area ofn-gonAiA; ... Ay (Special case fon = 3, Sagc:
area ofAABC).

o N, Z, Q, R, C: the sets of natural, integer, rational, real, complex nerslfre-
spectively).

o Zn: the ring of residues modulg n € N.
o Zp: the field of residues modulp, p being prime.

o Z[x], R[x]: the rings of polynomials i with integer and real coefficients respec-
tively.

o R*:the set of nonzero elements of a riRg

o Rla], R(a), wherea is a root of a quadratic polynomial R[x|: {a+ba |a,be
R}.

o Xo: XU {0} for X such that G# X.

o Xt, X7, aX+b,aX+bY: {x|xe X,x> 0}, {x]| xe X,x< 0}, {ax+b|xe X},
{ax+by|xe X,y € Y} (respectively) foiX,Y CR, a,b e R.

o [X], [X]: the greatest integer smaller than or equal.to
o [x]: the smallest integer greater than or equal.to

The following is notation simultaneously used in differeohcepts (depending on
context).

o |AB|, ||, |S: the distance between two poiB, the absolute value of the num-
berx, the number of elements of the skfrespectively).

o (xy), (mn), (a,b): (ordered) paix andy, the greatest common divisor of inte-
gersmandn, the open interval between real numbaendb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviatas much as possible.
However, one nonstandard abbreviation stood out as pkntigwonvenient:

o w.l.o.g.: without loss of generality.
Other abbreviations include:

o RHS: right-hand side (of a given equation).
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LHS: left-hand side (of a given equation).

QM, AM, GM, HM: the quadratic mean, the arithmetic mean, te®metric
mean, the harmonic mean (respectively).

gcd, Icm: greatest common divisor, least common multipgsgectively).
i.e.:in other words.

e.g.: for example.
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Codes of the Countries of Origin

ARG
ARM
AUS
AUT
BEL
BLR
BRA
BUL
CAN
CHN
COL
CRO
CuB
CYP
CZE
Czs
EST
FIN
FRA
FRG
GBR
GDR
GEO
GER
GRE

Argentina
Armenia
Australia
Austria
Belgium
Belarus
Brazil
Bulgaria
Canada
China
Colombia
Croatia
Cuba
Cyprus

Czech Republic
Czechoslovakia

Estonia
Finland
France
Germany, FR

United Kingdom

Germany, DR
Georgia
Germany
Greece

HKG
HUN
ICE
INA
IND
IRE
IRN
ISR
ITA
JAP
KAZ
KOR
KUw
LAT
LIT
LUX
MCD
MEX
MON
MOR
NET
NOR
NZL
PER
PHI

Hong Kong
Hungary
Iceland
Indonesia
India

Ireland

Iran

Israel

Italy

Japan
Kazakhstan
Korea, South
Kuwait
Latvia
Lithuania
Luxembourg
Macedonia
Mexico
Mongolia
Morocco
Netherlands
Norway
New Zealand
Peru
Philippines

POL
POR
PRK
PUR
ROM
RUS
SAF
SER
SIN
SLO
SMN
SPA
SVK
SWE
THA
TUN
TUR
TWN
UKR
USA
USS
UzB
VIE
YUG

Poland
Portugal
Korea, North
Puerto Rico
Romania
Russia
South Africa
Serbia
Singapore
Slovenia
Serbia and Montenegro
Spain
Slovakia
Sweden
Thailand
Tunisia
Turkey
Taiwan
Ukraine
United States
Soviet Union
Uzbekistan
Vietnam
Yugoslavia



