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1

Problems

1.1 The Forty-Seventh IMO
Ljubljana, Slovenia, July 6–18, 2006

1.1.1 Contest Problems

First Day (July 12)

1. Let ABC be a triangle with incenterI. A point P in the interior of the triangle
satisfies

∠PBA +∠PCA = ∠PBC +∠PCB.

Show thatAP ≥ AI, and that equality holds if and only ifP = I.

2. Let P be a regular 2006-gon. A diagonal ofP is calledgood if its endpoints
divide the boundary ofP into two parts, each composed of an odd number of
sides ofP. The sides ofP are also called good.
SupposeP has been dissected into triangles by 2003 diagonals, no two of which
have a common point in the interior ofP. Find the maximum number of isosce-
les triangles having two good sides that could appear in sucha configuration.

3. Determine the least real numberM such that the inequality
∣

∣ab(a2−b2)+ bc(b2− c2)+ ca(c2−a2)
∣

∣ ≤ M(a2 + b2+ c2)2

holds for all real numbersa, b andc.

Second Day (July 13)

4. Determine all pairs(x,y) of integers such that

1+2x +22x+1 = y2.

5. LetP(x) be a polynomial of degreen > 1 with integer coefficients and letk be a
positive integer. Consider the polynomial
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Q(x) = P(P(. . .P(P(x)) . . . )),

whereP occursk times. Prove that there are at mostn integerst such thatQ(t) =
t.

6. Assign to each sideb of a convex polygonP the maximum area of a triangle that
hasb as a side and is contained inP. Show that the sum of the areas assigned
to the sides ofP is at least twice the area ofP.

1.1.2 Shortlisted Problems

1. A1 (EST) A sequence of real numbersa0, a1, a2, . . . is defined by the formula

ai+1 = [ai] · {ai}, for i ≥ 0;

herea0 is an arbitrary number,[ai] denotes the greatest integer not exceedingai,
and{ai} = ai − [ai]. Prove thatai = ai+2 for i sufficiently large.

2. A2 (POL) The sequence of real numbersa0, a1, a2, . . . is defined recursively
by

a0 = −1,
n

∑
k=0

an−k

k +1
= 0 for n ≥ 1.

Show thatan > 0 for n ≥ 1.

3. A3 (RUS) The sequencec0, c1, . . . , cn, . . . is defined byc0 = 1, c1 = 0, and
cn+2 = cn+1 + cn for n ≥ 0. Consider the setS of ordered pairs(x,y) for which
there is a finite setJ of positive integers such thatx = ∑ j∈J c j, y = ∑ j∈J c j−1.
Prove that there exist real numbersα,β , andM with the following property: An
ordered pair of nonnegative integers(x,y) satisfies the inequalitym < αx+β y <
M if and only if (x,y) ∈ S.
Remark: A sum over the elements of the empty set is assumed to be 0.

4. A4 (SER) Prove the inequality

∑
i< j

aia j

ai + a j
≤ n

2(a1+ a2+ · · ·+ an)
∑
i< j

aia j

for positive real numbersa1,a2, . . . ,an.

5. A5 (KOR) Let a, b, c be the sides of a triangle. Prove that
√

b + c−a√
b+

√
c−√

a
+

√
c + a−b

√
c +

√
a−

√
b

+

√
a + b− c

√
a+

√
b−√

c
≤ 3.

6. A6 (IRE) IMO3 Determine the smallest numberM such that the inequality

|ab(a2−b2)+ bc(b2− c2)+ ca(c2−a2)| ≤ M(a2 + b2+ c2)2

holds for all real numbersa, b, c
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7. C1 (FRA) We haven≥ 2 lampsL1, . . . ,Ln in a row, each of them being eitheron
or off. Every second we simultaneously modify the state of each lamp as follows:
if the lampLi and its neighbours (only one neighbour fori = 1 or i = n, two
neighbours for otheri) are in the same state, thenLi is switched off; – otherwise,
Li is switched on.
Initially all the lamps are off except the leftmost one whichis on.
(a) Prove that there are infinitely many integersn for which all the lamps will

eventually be off.
(b) Prove that there are infinitely many integersn for which the lamps will never

be all off.

8. C2 (SER)IMO2 A diagonal of a regular 2006-gon is calledodd if its endpoints
divide the boundary into two parts, each composed of an odd number of sides.
Sides are also regarded as odd diagonals. Suppose the 2006-gon has been dis-
sected into triangles by 2003 non-intersecting diagonals.Find the maximum pos-
sible number of isosceles triangles with two odd sides.

9. C3 (COL) Let S be a finite set of points in the plane such that no three of them
are on a line. For each convex polygonP whose vertices are inS, let a(P) be
the number of vertices ofP, and letb(P) be the number of points ofS which are
outsideP. Prove that for every real numberx

∑
P

xa(P)(1− x)b(P) = 1,

where the sum is taken over all convex polygons with verticesin S.
Remark. A line segment, a point, and the empty set are considered as convex
polygons of 2, 1, and 0 vertices respectively.

10. C4 (TWN) A cake has the form of ann×n square composed ofn2 unit squares.
Strawberries lie on some of the unit squares so that each row or column contains
exactly one strawberry; call this arrangementA .
Let B be another such arrangement. Suppose that every grid rectangle with one
vertex at the top left corner of the cake contains no fewer strawberries of arrange-
mentB than of arrangementA . Prove that arrangementB can be obtained from
A by performing a number ofswitches, defined as follows:
A switch consists in selecting a grid rectangle with only two strawberries, situ-
ated at its top right corner and bottom left corner, and moving these two straw-
berries to the other two corners of that rectangle.

11. C5 (ARG) An (n,k)-tournament is a contest withn players held ink rounds
such that:
(i) Each player plays in each round, and every two players meet at most once.
(ii) If player A meets playerB in roundi, playerC meets playerD in roundi,

and playerA meets playerC in round j, then playerB meets playerD in
round j.

Determine all pairs(n,k) for which there exists an(n,k)-tournament.
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12. C6 (COL) A holey triangle is an upward equilateral triangle of side lengthn
with n upward unit triangular holes cut out. Adiamond is a 60◦ − 120◦ unit
rhombus. Prove that a holey triangleT can be tiled with diamonds if and only if
the following condition holds: Every upward equilateral triangle of side lengthk
in T contains at mostk holes, for 1≤ k ≤ n.

13. C7 (JAP) Consider a convex polyheadron without parallel edges and without
an edge parallel to any face other than the two faces adjacentto it. Call a pair
of points of the polyheadronantipodal if there exist two parallel planes passing
through these points and such that the polyheadron is contained between these
planes.
Let A be the number of antipodal pairs of vertices, and letB be the number of
antipodal pairs of midpoint edges. Determine the difference A−B in terms of
the numbers of vertices, edges, and faces.

14. G1 (KOR) IMO1 Let ABC be a triangle with incenterI. A point P in the interior
of the triangle satisfies∠PBA +∠PCA = ∠PBC + ∠PCB. Show thatAP ≥ AI
and that equality holds if and only ifP coincides withI.

15. G2 (UKR) Let ABC be a trapezoid with parallel sidesAB > CD. PointsK and
L lie on the line segmentsAB andCD, respectively, so thatAK/KB = DL/LC.
Suppose that there are pointsP andQ on the line segmentKL satisfying∠APB =
∠BCD and∠CQD = ∠ABC. Prove that the pointsP, Q, B, andC are concyclic.

16. G3 (USA) Let ABCDE be a convex pentagon such that∠BAC = ∠CAD =
∠DAE and∠ABC = ∠ACD = ∠ADE. The diagonalsBD andCE meet atP.
Prove that the lineAP bisects the sideCD.

17. G4 (RUS) A point D is chosen on the sideAC of a triangleABC with ∠C <
∠A < 90◦ in such a way thatBD = BA. The incircle ofABC is tangent toAB and
AC at pointsK andL, respectively. LetJ be the incenter of triangleBCD. Prove
that the lineKL intersects the line segmentAJ at its midpoint.

18. G5 (GRE) In triangleABC, let J be the center of the excircle tangent to side
BC at A1 and to the extensions of sidesAC andAB at B1 andC1, respectively.
Suppose that the linesA1B1 andAB are perpendicular and intersect atD. Let E
be the foot of the perpendicular fromC1 to lineDJ. Determine the angles∠BEA1

and∠AEB1.

19. G6 (BRA) Circles ω1 andω2 with centersO1 andO2 are externally tangent
at pointD and internally tangent to a circleω at pointsE andF, repsectively.
Line t is the common tangent ofω1 andω2 at D. Let AB be the diameter ofω
perpendicular tot, so thatA, E, andO1 are on the same side oft. Prove that the
linesAO1, BO2, EF, andt are concurrent.

20. G7 (SVK) In an triangleABC, let Ma, Mb, Mc, be resepctively the midpoints of
the sidesBC, CA, AB, andTa, Tb, Tc be the midpoints of the arcsBC, CA, AB of
the circumcircle ofABC, not couning the opposite vertices. Fori ∈ {a,b,c} let
ωi be the circle withMiTi as diameter. Letpi be the common external tangent to
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ω j, ωk ({i, j,k} = {a,b,c}) such thatωi lies on the opposite side ofpi thanω j,
ωk do. Prove that the linespa, pb, pc form a triangle similar toABC and find the
ratio of similitude.

21. G8 (POL) Let ABCD be a convex quadrilateral. A circle passing through the
pointsA andD and a circle passing through the pointsB andC are externally
tangent at a pointP inside the quadrilateral. Suppose that∠PAB+∠PDC ≤ 90◦

and∠PBA +∠PCD ≤ 90◦. Prove thatAB +CD ≥ BC + AD.

22. G9 (RUS) PointsA1, B1, C1 are chosen on the sidesBC, CA, AB of a triangle
ABC respectively. The circumcircles of trianglesAB1C1, BC1A1, CA1B1 intersect
the circumcircle of triangleABC again at pointsA2, B2, C2 respectively (A2 6= A,
B2 6= B, C2 6= C). PointsA3, B3, C3 are symmetric toA1, B1, C1 with respect
to the midpoints of the sidesBC, CA, AB, respectively. Prove that the triangles
A2B2C2 andA3B3C3 are similar.

23. G10 (SER)IMO6 Assign to each sideb of a convex polygonP the maximum
area of a triangle that hasb as a side and is contained inP. Show that the sum
of the areas assigned to the sides ofP is at least twice the area ofP.

24. N1 (USA)IMO4 Determine all pairs(x,y) of integers satisfying the equation 1+
2x +22x+1 = y2.

25. N2 (CAN) For x ∈ (0,1) let y ∈ (0,1) be the number whosenth digit after the
decimal point is the 2nth digit after the decimal point ofx. Show that ifx is
rational then so isy.

26. N3 (SAF) The sequencef (1), f (2), f (3), . . . is defined by

f (n) =
1
n

([n
1

]

+
[n

2

]

+ · · ·+
[n

n

])

,

where[x] denotes the integral part ofx.
(a) Prove thatf (n +1) > f (n) infinitely often.
(b) Prove thatf (n +1) < f (n) infinitely often.

27. N4 (ROM) IMO5 Let P(x) be a polynomial of degreen > 1 with integer co-
efficients and letk be a positive integer. Consider the polynomialQ(x) =
P(P(. . .P(P(x)) . . . )), whereP occursk times. Prove that there are at mostn
integerst such thatQ(t) = t.

28. N5 (RUS) Find all integer solutions of the equation

x7−1
x−1

= y5−1.

29. N6 (USA) Let a > b > 1 be relatively prime positive integers. Define theweight
of an integerc, denoted byw(c) to be the minimal possible value of|x|+ |y|
taken over all pairs of integersx andy such thatax + by = c. An integerc is
called alocal champion if w(c) ≥ w(c± a) andw(c) ≥ w(c± b). Find all local
champions and determine their number.
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30. N7 (EST) Prove that for every positive integern there exists an integerm such
that 2m + m is divisible byn.



2

Solutions
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2.1 Solutions to the Shortlisted Problems of IMO 2006

1. If a0 ≥ 0 thenai ≥ 0 for eachi and[ai+1]≤ ai+1 = [ai]{ai}< [ai] unless[ai] = 0.
Eventually 0 appears in the sequence[ai] and all subsequentak’s are 0.
Now suppose thata0 < 0; then all ai ≤ 0. Suppose that the sequence never
reaches 0. Then[ai] ≤ −1 and so 1+ [ai+1] > ai+1 = [ai]{ai} > [ai], so the se-
quence[ai] is nondecreasing and hence must be constant from some term on:
[ai] = c < 0 for i ≥ n. The defining formula becomesai+1 = c{ai} = c(ai − c)

which is equivalent tobi+1 = cbi, wherebi = ai − c2

c−1. Since(bi) is bounded,
we must have eitherc = −1, in which caseai+1 = −ai −1 and henceai+2 = ai,
or bi = 0 and thusai = c2

c−1 for all i ≥ n.

2. We use induction onn. We havea1 = 1/2; assume thatn ≥ 1 anda1, . . . ,an > 0.
The formula gives us(n + 1)∑m

k=1
ak

m−k+1 = 1. Writing this equation forn and
n +1 and subtracting yields

(n +2)an+1 =
n

∑
k=1

(

n +1
n− k +1

− n +2
n− k +2

)

ak

which is positive as so is the coefficient at eachak.
Remark. By using techniques from complex analysis such as contour integrals
one can obtain the following formula forn ≥ 1:

an =
∫ ∞

1

dx

xn(π2+ ln2(x−1))
> 0.

3. We know thatcn = φ n−1−ψn−1

φ−ψ , whereφ = 1+
√

5
2 andψ = 1−

√
5

2 are the roots of

t2− t−1. Sincecn−1/cn →−ψ , takingα = ψ andβ = 1 is a natural choice. For
every finite setJ ⊆ N we have

−1 =
∞

∑
n=0

ψ2n+1 < ψx + y = ∑
j∈J

ψ j−1 <
∞

∑
n=0

ψ2n = φ .

Thusm =−1 andM = φ is an appropriate choice. We now prove that this choice
has the desired properties by showing that, for anyx,y ∈ N with −1 < K =
xψ + y < φ , there is a finite setJ ⊂ N such thatK = ∑ j∈J ψ j.
Given suchK, there are sequencesi1 ≤ ·· · ≤ ik with ψ i1 + · · ·+ ψ ik = K (one
such sequence consists ofy zeros andx ones). Consider all such sequences of
minimum lengthn. Sinceψm + ψm+1 = ψm+2, these sequences contain no two
consecutive integers. Order such sequences as follows: Ifik = jk for 1≤ k≤ t and
it < jt , then(ir) ≺ ( jr). Consider the smallest sequence(ir)n

r=1 in this ordering.
We claim that its terms are distinct. Since 2ψ2 = 1+ ψ3, replacing two equal
termsm,m bym−2,m+1 for m≥ 2 would yield a smaller sequence, so only 0 or
1 can repeat among their. But it = it+1 = 0 implies∑r ψ ir > 2+∑∞

k=0 ψ2k+3 = φ ,
while it = it+1 = 1 similarly implies∑r ψ ir < −1, so both cases are impossible,
proving our claim. ThusJ = {i1, . . . , in} is a required set.
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4. Since ab
a+b = 1

4

(

a + b− (a−b)2

a+b

)

, the left hand side of the desired inequality

equals

A = ∑
i< j

aia j

ai + a j
=

n−1
4 ∑

k

ak −
1
4 ∑

i< j

(ai −a j)
2

ai + a j
.

The right hand side of the inequality is equal to

B =
n
2

∑aia j

∑ak
=

n−1
4 ∑

k

ak −
1
4 ∑

i< j

(ai −a j)
2

∑ak
.

Now A ≤ B follows from the trivial inequality∑ (ai−a j)
2

ai+a j
≥ ∑ (ai−a j)

2

∑ak
.

5. Letx =
√

b+
√

c−√
a, y =

√
c+

√
a−

√
b, andz =

√
a+

√
b−√

c. All of these
numbers are positive becausea,b,c are sides of a triangle. Thenb + c− a =
x2− 1

2(x− y)(x− z) and

√
b + c−a√

b+
√

c−√
a

=

√

1− (x− y)(y− z)
2x2 ≤ 1− (x− y)(x− z)

4x2 .

Now it is enough to prove that

x−2(x− y)(x− z)+ y−2(y− z)(y− x)+ z−2(z− x)(z− y)≥ 0

which directly follows from Schur’s inequality.

6. Assume w.l.o.g. thata ≥ b ≥ c. The LHS of the inequality equalsL = (a −
b)(b− c)(a− c)(a + b + c). From(a−b)(b− c) ≤ 1

4(a− c)2 we getL ≤ 1
4(a−

c)3|a+b+ c|. The inequality(a− c)2 ≤ 2(a−b)2+2(b− c) implies(a− c)2 ≤
2
3[(a−b)2+(b− c)2+(a− c)2]. Therefore

L ≤
√

2
2

(

(a−b)2+(b− c)2+(a− c)2

3

)3/2

(a + b + c).

Finally, the mean inequality gives us

L ≤
√

2
2

(

(a−b)2+(b− c)2+(a− c)2+(a + b + c)2

4

)2

=
9
√

2
32

(a2 + b2+ c2)2.

The equality is attained if and only ifa−b = b−c and(a−b)2+(b−c)2+(a−
c)2 = 3(a + b + c)2, which leads toa =

(

1+ 3√
2

)

b andc =
(

1− 3√
2

)

b. Thus

M = 9
√

2
32 .

Second solution. We haveL = |(a−b)(b−c)(c−a)(a+b+c)|. Assume w.l.o.g.
thata+b+c = 1 (the casea+b+c = 0 is trivial). The monic cubic polynomial
with the rootsa−b, b− c andc−a is of the form
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P(x) = x3 + qx + r, q =
1
2
− 3

2
(a2 + b2+ c2), r = −(a−b)(b− c)(c−a).

Then M2 = maxr2/
(

1−2q
3

)4
. Since P(x) has three real roots, its discrimi-

nant (q/3)3 + (r/2)2 must be positive, sor2 ≥ − 4
27q3. Thus M2 ≤ f (q) =

− 4
27q3/

(

1−2q
3

)4
. Function f attains its maximum 34/29 at q = −3/2, soM ≤

9
√

2
32 . The case of equality is easily computed.

Third solution. Assume thata2+b2+c2 = 1 and writeu = (a+b+c)/
√

3, v =
(a + εb + ε2c)/

√
3, w = (a + ε2b + εc)/

√
3, whereε = e2π i/3. Then analogous

formulas hold fora,b,c in terms ofu,v,w, from which one directly obtains|u|2+
|v|2 + |w|2 = a2 + b2+ c2 = 1 and

a + b + c =
√

3u, |a−b|= |v− εw|, |a− c|= |v− ε2w|, |b− c|= |v−w|.

ThusL =
√

3|u||v3−w3| ≤
√

3|u|(|v|3 + |w|3) ≤
√

3
2|u|2(1−|u|2)3 ≤ 9

√
2

32 . It is
easy to trace backa,b,c to the equality case.

7. (a) We show that forn = 2k all lamps will be switched on inn−1 steps and off
in n steps. Fork = 1 the statement is true. Suppose it holds for somek and
let n = 2k+1; denoteL = {L1, . . . ,L2k} andR = {L2k+1, . . . ,L2k+1}. The first
2k −1 steps are performed without any influence on or from the lamps from
R; thus after 2k − 1 steps the lamps inL are on and those fromR are off.
After the 2k-th step,L2k andL2k+1 are on and the other lamps are off. Notice
that from nowL andR will be symmetric (i.e.Li andL2k+1−i will have the
same state) and will never influence each other. SinceR starts with only the
leftmost lamp on, in 2k steps all its lamps will be off. The same will happen
to L. There are 2k +2k = 2k+1 steps in total.

(b) We claim that forn = 2k +1 the lamps cannot be switched off. After the first
step onlyL1 andL2 are on. According to (a), after 2k −1 steps all lamps but
Ln will be on, so after the 2k-th step all lamps will be off except forLn−1

andLn. Since this position is symmetric to the one after the first step, the
procedure will never end.

8. We call a triangleodd if it has two odd sides. To any odd isosceles triangle
AiA jAk we assign a pair of sides of the 2006-gon. We may assume thatk− j =
j − i > 0 is odd. A side of the 2006-gon is said tobelong to triangleAiA jAk

if it lies on the polygonal lineAiAi+1 . . .Ak. At least one of the odd number of
sidesAiAi+1, . . . ,A j−1A j and at least one of the sidesA jA j+1, . . . ,Ak−1Ak do not
belong to any other odd isosceles triangle; assign those twosides to△AiA jAk.
This ensures that every two assigned pairs are disjoint; therefore there are at
most 1003 odd isosceles triangles.
An example with 1003 odd isosceles triangles can be attainedwhen the diagonals
A2kA2k+2 are drawn fork = 0, . . . ,1002, whereA0 = A2006.

9. The numberc(P) of points insideP is equal ton− a(P)− b(P), wheren = |S|.
Writing y = 1− x the considered sum becomes
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∑
P

xa(P)yb(P)(x + y)c(P) = ∑
P

c(P)

∑
i=0

(

c(P)

i

)

xa(P)+iyb(P)+c(P)−i

= ∑
P

a(P)+c(P)

∑
k=a(P)

(

c(P)

k−a(P)

)

xkyn−k.

Here the coefficient atxkyn−k is the sum∑P

( c(P)
k−a(P)

)

which equals the number

of pairs(P,Z) of a convex polygonP and ak-element subsetZ of S whose con-
vex hull isP, and is thus equal to

(n
k

)

. Now the required statement immediately
follows.

10. Denote bySA (R) the number of strawberries of arrangementA inside rectangle
R. We writeA ≤ B if for every rectangleQ containing the top left cornerO we
haveSB(Q) ≥ SA (Q). In this ordering, every switch transforms an arrangement
to a larger one. Since the number of arrangements is finite, itis enough to prove
that wheneverA < B there is a switch takingA toC with C ≤B. Consider the
highest rowt of the cake which differs inA andB; let X andY be the positions
of the strawberries int in A andB respectively. ClearlyY is to the left from
X and the strawberry ofA in the column ofY is belowY . Now consider the
highest strawberryX ′ of A belowt whose column is betweenX andY (including
Y ). Let s be the row ofX ′. Now switchX ,X ′ to the other two verticesZ,Z′ of
the corresponding rectangle, obtain-
ing an arrangementC . We claim
that C ≤ B. It is enough to ver-
ify that SC (Q) ≤ SB(Q) for those
rectanglesQ = OMNP with N ly-
ing insideXZX ′Z′. Let Q′ = OMN1P1

be the smallest rectangle contain-
ing X . Our choice ofs ensures that
SC (Q) = SA (Q′) ≥ SB(Q′) ≥ SB(Q),
as claimed.

X ′

O

M
N

N1

P P1

t

s

XY Z

Z′

11. Letq be the largest integer such that 2q | n. We prove that an(n,k)-tournament
exists if and only ifk < 2q.
The first l rounds of an(n,k)-tournament form an(n, l)-tournament. Thus it is
enough to show that a(n,2q − 1)-tournament exists and a(n,2q)-tournament
does not.
If n = 2q, we can label the contestants and rounds by elements of the additive
groupZq

2. If contestantsx andx + j meet in the round labelledj, it is easy to
verify the conditions. Ifn = 2q p, we can divide the contestants intop disjoint
groups of 2q and perform a(2q,2q − 1)-tournament in each, thus obtaining an
(n,2q −1)-tournament.
For the other direction letGi be the graph of players with edges between any two
players who met in the firsti rounds. We claim that the size of each connected
component ofGi is a power of 2. Fori = 1 this is obvious; assume it holds fori.
Suppose that the componentsC andD merge in the(i+1)-th round. Then some



12 2 Solutions

c ∈C andd ∈ D meet in this round. Moreover, each player inC meets a player in
D. Indeed, for everyc′ ∈C there is a pathc = c0,c1, . . . ,ck = c′ with c jc j+1 ∈ Gi;
then if d j is the opponent ofc j in the(i+1)-th round, condition (ii) shows that
eachd jd j+1 ∈ Gi, sodk ∈ D. Analogously, all players inD meet players inC, so
|C| = |D|, proving our claim. Now if there are 2q rounds, every component has
size at least 2q +1 and is thus divisible by 2q+1, which is impossible if 2q+1 ∤ n.

12. LetU andD be the sets of upward and downward unit triangles, respectively.
Two triangles areneighbors if they form a diamond. ForA ⊆ D, denote byF(A)
the set of neighbors of he elements ofA.
If a holey triangle can be tiled with diamonds, in every upward triangle of sidel
there arel2 elements ofD, so there must be at least as many elements ofU and
at mostl holes.
Now we pass to the other direction. It is enough to show the condition (ii) of
the marriage theorem: For every setX ⊂ D we have|F(X)| ≥ |X |. Indeed, the
theorem claims that then we can ”marry” the elements ofD with the elements
of U , which means exactly coveringT by diamonds. So, assume to the contrary
that|F(X)|< |X | for some setX . Note that two elements ofD having a common
neighbor must share a vertex; this means that we can focus on connected setsX .
Consider an upward triangle of side 3. It contains three elements ofD; if two of
them are inX , adding the third one toX increasesF(X) by at most 1, so|F(X)|<
|X | still holds. Continuing this procedure we will end up with a set X forming
an upward sub-triangle ofT and satisfying|F(X)| < |X |, which contradicts the
conditions of the problem. This contradiction proves that|F(X)| ≥ |X | for every
setX .

13. Consider a polyhedronP with v vertices,e edges andf faces. Consider the
mapσ to the unit sphereS taking each vertex, edge or facex of P to the set
of outward unit normal vectors (i.e. points onS) to the support planes ofP
containingx. Thusσ maps faces to points onS, edges to shorter arcs of big
circles connecting some pairs of these points, and verticesto spherical regions
formed by these arcs. These points, arcs and regions onS form a ”spherical
polyhedron”G .
We now translate the conditions of the problem into the language ofG . Denote
by x the image ofx in reflection in the center ofS. No edge ofP being parallel
to another edge or face means that the big circle of any edgee of G does not
contain any vertexV non-incident toe. Also note that verticesA andB of P are
antipodal if and only ifσ(A) andσ(B) intersect, and that the midpoints of edges
a andb are antipodal if and only ifσ(a) andσ(b) intersect.
Consider the unionF of G andG . The faces ofF are the intersections of faces
of G andG , so their number equals 2A. Similarly, the edges ofG andG have 2B
intersections, soF has 2e+4B edges and 2f +2B vertices. Now Euler’s theorem
for F gives us 2e +4B +2= 2A +2 f +2B, and thereforeA−B = e− f +1.

14. The condition of the problem implies that∠PBC + ∠PCB = 90◦ − α/2, i.e.
∠BPC = 90◦ + α/2 = ∠BIC. ThusP lies on the circumcircleω of △BCI. It
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is well known that the centerM of ω is the second intersection ofAI with the
circumcircle of△ABC. ThereforeAP≥ AM−MP = AM−MI = AI, with equal-
ity if and only if P ≡ I.

15. The relationAK/KB = DL/LC implies thatAD,BC and KL have a common
point O. Moreover, since∠APB = 180◦−∠ABC and∠DQC = 180◦−∠BCD,
line BC is tangent to the circlesAPB andCQD. These two circles are homothetic
with respect toO, so if OP meets circleAPB again atP′, we have∠PQC =
∠PP′B = ∠PBC, showing thatP,Q,B,C lie on a circle.

16. Let the diagonalsAC andBD meet atQ andAD andCE meet atR. The quadri-
lateralsABCD andACDE are similar, soAQ/QC = AR/RD. Now if AP meets
CD at M, the Ceva theorem gives usCM

MD = CQ
QA · AR

RD = 1.

17. LetM be the point onAC such thatJM ‖ KL. It is enough to prove thatAM =
2AL.
From∠BDA = α we obtain that∠JDM = 90◦− α

2 = ∠KLA = ∠JMD; hence
JM = JD and the tangency point of the incircle of△BCD with CD is the mid-
pointT of segmentMD. Therefore,DM = 2DT = BD+CD−BC = AB−BC+
CD, which gives us

AM = AD+ DM = AC + AB−BC = 2AL.

18. Let A1B1 and CJ intersect at K.
ThenJK is parallel and equal toC1D
andDC1/C1J = JK/JB1 = JB1/JC =
C1J/JC, so the right trianglesDC1J
and C1JC are similar; henceC1C ⊥
DJ. Thus E belongs toCC1. Now
the points A1,B1 and E lie on the
circle with diameterCJ. Therefore
∠DBA1 = ∠A1CJ = ∠A1ED, implying

A

J

C1

B1

A1

B

C

D

K

E

thatBEA1D is cyclic; hence∠A1EB = 90◦. Likewise,ADEB1 is cyclic because
∠EB1A = ∠EJC = ∠EDC1, so∠AEB1 = 90◦.
Second solution. The segmentsJA1,JB1,JC1 are tangent to the circles with di-
ametersA1B,AB1,C1D. SinceJA2

1 = JB2
1 = JC2

1 = JD ·JE, E lies on the first two
circles (with diametersA1B andAB1), so∠AEB1 = ∠A1EB = 90◦.

19. The homothety with centerE mapping
ω1 to ω mapsD to B, soD lies onBE;
analogously,D lies onAF . Let AE and
BF meet at pointC. The linesBE and
AF are the altitudes of triangleABC, so
D is the orthocenter andC lies ont. Let
the line throughD parallel toAB meet
AC atM. The centersO1 andO2 are the
midpoints ofDM andDN respectively.

A B

C

O K

E

FDO1M
O2

P
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We have thus reduced the problem to a classical triangle geometry problem:
If CD and EF intersect atP, we should prove that pointsA, O1 and P are
collinear (analogously, so areB,O2,P). By the Menelaus theorem for triangle
CDM, this is equivalent toCA

AM = CP
PD , which is again equivalent toCK

KD = CP
PD

(becauseDM ‖ AB), whereK is the foot of the altitude fromC to AB. The last
equality immediately follows from the fact that the pairsC,D; P,K are harmoni-
cally adjoint.

20. Let I be the incenter of△ABC. It is well known thatTaTc and TaTb are the
perpendicular bisectors of the segmentsBI andCI respectively. LetTaTb meet
AC at P andωb atU , and letTaTc meetAB at Q andωc atV . We have∠BIQ =
∠IBQ = ∠IBC, so IQ ‖ BC; similarly IP ‖ BC. HencePQ is the line throughI
parallel toBC.
The homothety fromTb mappingωb to the circumcircleω of ABC maps the
tangentt to ωb atU to the tangent toω at Ta which is parallel toBC. It follows
that t ‖ BC. Let t meetAC at X . SinceXU = XMb and∠PUMb = 90◦, X is the
midpoint ofPMb. Similarly, the tangent toωc atV meetsQMc at its midpointY .
But sinceXY ‖ PQ ‖ MbMc, pointsU,X ,Y,V are collinear, sot coincides with
the common tangentpa. Thuspa runs midway betweenI andMbMc. Analogous
conclusions hold forpb andpc, so these three lines form a triangle homothetic
to the triangleMaMbMc from centerI in ratio 1

2 which is therefore similar to the
triangleABC in ratio 1

4.

21. The following proposition is easy to prove:
Lemma. For an arbitrary pointX inside a convex quadrilateralABCD, circles

ADX andBCX are tangent atX if and only if ∠ADX +∠BCX = ∠AXB.
Let Q be the second intersection point of the circlesABP andCDP (we assume
Q 6≡ P; the opposite case is similarly handled). It follows from the conditions
of the problem thatQ lies inside quadrilateralABCD (since∠BCP + ∠BAP <
180◦, C is outside the circumcircle ofAPB; the same holds forD). If Q is inside
△APD (the other case is similar), we have∠BQC = ∠BQP+∠PQC = ∠BAP+
∠CDP ≤ 90◦. Similarly ∠AQD ≤ 90◦. Moreover,∠ADQ +∠BCQ = ∠ADP +
∠BCP = ∠APB = ∠AQB implies that circlesADQ andBCQ are tangent atQ.
Therefore the interiors of the semicircles with diametersAD andBC are disjoint
and if M, N are the midpoints ofAD and BC respectively, we have 2MN ≥
AD + BC. On the other hand, 2MN ≤ AB +CD because

−→
BA +

−→
CD = 2

−−→
MN, and

the statement of the problem immediately follows.

22. We work with oriented angles modulo 180◦. For two linesa,b we denote by
∠(l,m) the angle of counterclockwise rotation transforminga to b; also, by
∠ABC we mean∠(BA,BC).
It is well-known that the circlesAB1C1, BC1A1 andCA1B1 have a common point,
sayP. LetO be the circumcenter ofABC. Denote∠PB1C = ∠PC1A = ∠PA1B =
ϕ . Let A2P,B2P,C2P meet the circleABC again atA4,B4,C4, respectively. Since
∠A4A2A = ∠PA2A = ∠PC1A = ϕ and thus∠A4OA = 2ϕ etc,△ABC is the image
of △A4B4C4 under rotationR aboutO by 2ϕ .
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Therefore ∠(AB4,PC1) = ∠B4AB +
∠AC1P = ϕ − ϕ = 0, so AB4 ‖ PC1.
Let PC1 intersectA4B4 at C5; define
A5,B5 analogously. Then∠B4C5P =
∠A4B4A = ϕ , soAB4C5C1 is an isosce-
les trapezoid withBC3 = AC1 = B4C5.
Similarly,AC3 = A4C5, soC3 is the im-
age ofC5 underR; similar statements
hold for A5,B5. Thus △A3B3C3

∼=
△A5B5C5. It remains to show that
△A5B5C5 ∼△A2B2C2.
We have seen that∠A4B5P = ∠B4C5P,

A B

C

P

A1

B1

C1

A2

B2

C2

A4

B4

C4

A5
B5

C5

which implies thatP lies on the circleA4B5C5. Analogously,P lies on the circle
C4A5B5. Therefore

∠A2B2C2 = ∠A2B2B4 +∠B4B2C2 = ∠A2A4B4 +∠B4C4C2

= ∠PA4C5 +∠A5C4P = ∠PB5C5 +∠A5B5P = ∠A5B5C5,

and similarly for the other angles, which is what we wanted.

23. LetSi be the area assigned to sideAiAi+1 of polygonP = A1 . . .An of areaS.
We start with the following auxiliary statement.
Lemma. At least one of the areasS1, . . . ,Sn is not smaller than 2S/n.
Proof. It suffices to show the statement for evenn. The case of an oddn will

then follow immediately from this case applied on the degenerated 2n-gon
A1A′

1 . . .AnA′
n, whereA′

i is the midpoint ofAiAi+1.
Let n = 2m. Fori = 1,2, . . . ,m, denote byTi the area of the regionPi inside
the polygon bounded by the diagonalsAiAm+i, Ai+1Am+i+1 and the sides
AiAi+1, Am+iAm+i+1. We observe that the regionsPi cover the entire poly-
gon. Indeed, letX be an arbitrary point inside the polygon, to the left (with-
out loss of generality) of the rayA1Am+1.
Then X is to the right of the ray
Am+1A1, so there is ak such thatX
is to the left of rayAkAk+m and to
the right of rayAk+1Ak+m+1, i.e.X ∈
Pk. It follows thatT1+ · · ·+Tm ≥ S;
hence at least oneTi is not smaller
than 2S/n, sayT1 ≥ 2S/n.
Let O be the intersection point of
A1Am+1 and A2Am+2, and let us
assume without loss of generality

A1 A2

A3

Am+1Am+2Am+3

O
X

P1

P1

thatSA1A2O ≥ SAm+1Am+2O andA1O≥OAm+1. Then we haveS1≥ SA1A2Am+2 =
SA1A2O + SA1Am+2O ≥ SA1A2O + SAm+1Am+2O = T1 ≥ 2S/n, which proves the
lemma.
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If, contrary to the assertion,∑ Si
S < 2, we can choose rational numbersqi =

2mi/N with N = m1 + · · ·+ mn such thatqi > Si/S. However, considering the
given polygon as a degeneratedN-gon obtained by division of sideAiAi+1 into
mi equal parts for eachi and applying the lemma we obtainSi/mi ≥ 2S/N, i.e.
Si/S ≥ qi for somei, a contradiction.
Equality holds if and only ifP is centrally symmetric.
Second solution. We say that vertexV is assigned to sidea of a convex (possibly
degenerate) polygonP if the triangle determined bya andV has the maximum
areaSa among the triangles with sidea contained inP. Denoteσ(P) = ∑a Sa

andδ (P) = σ(P)−2[P]. We use induction on the numbern of pairwise non-
parallel sides ofP to show thatδ (P) ≥ 0 for every polygonP. This is obvi-
ously true forn = 2, so letn ≥ 3.
There exist two adjacent sidesAB andBC whose respective assigned verticesU
andV are distinct. Let the lines throughU andV parallel toAB andBC respec-
tively intersect at pointX . Assume w.l.o.g. that there are no sides ofP lying
onUX andVX . Call the sides and vertices ofP lying within the triangleUVX
passive (excluding verticesU andV ). It is easy to see that no passive vertex is
assigned to any side ofP and that vertexB is assigned to every passive side.
Now replace all passive vertices ofP by X , obtaining a polygonP ′. VertexB
is assigned to sidesUX andVX or P ′, so the sum of areas assigned to passive
sides increases by the areaS of the part of quadrilateralBUXV lying outside
P; the other assigned areas do not change. Thusσ increases byS. On the other
hand, the area of the polygon also increases byS, soδ decreases byS.
Note that the change fromP to P ′ decreases the number of nonparallel sides.
Thus by the inductive hypothesis we haveδ (P) ≥ δ (P ′) ≥ 0.
Third solution. To each convexn-gon P = A1A2 . . .An we assign a centrally
symmetric 2n-gonQ, called theassociate of P, as follows. Attach the 2n vec-
tors±−−−−→

AiAi+1 at a common origin and label themb1, · · · ,b2n counterclockwise so
thatbn+i = −bi for 1≤ i ≤ n. Then takeQ to be the polygonB1B2 . . .B2n with−−−−→
BiBi+1 = bi. Denote byai the side ofP corresponding tobi (i = 1, . . . ,n).
The distance between the parallel sidesBiBi+1 andBn+iBn+i+1 of Q equals twice
the maximum height ofP to the sideai. Thus, ifO is the center ofQ, the area of
△BiBi+1O (i = 1, . . . ,n) is exactly the areaSi assigned to sideai of P; therefore
[Q] = 2∑Si. It remains to show thatd(P) = [Q]−4[P]≥ 0.
(i) Suppose thatP has two parallel sidesai anda j, wherea j ≥ ai and remove

from it the parallelogramD determined byai and a part of sidea j. We obtain
a polygonP ′ with a smaller number of nonparallel sides. Then the associate
of P ′ is obtained fromQ by removing a parallelogram similar toD in ratio
2 (and with area four times that ofD); thusd(P ′) = d(P).

(ii) Suppose that there is a sidebi (i ≤ n) of Q such that the sum of the angles
at its endpoints is greater than 180◦. Extend the pairs of sides adjacent tobi

andbn+i to their intersectionsU andV , thus enlargingQ by two congruent
triangles to a polygonQ′. ThenQ′ is the associate of the polygonP ′ ob-
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tained fromP by attaching a triangle congruent toBiBi+1U to the sideai.
Therefored(P ′) equalsd(P) minus twice the area of the attached triangle.

By repeatedly performing the operations (i) and (ii) to polygonP we will even-
tually reduce it to a parallelogramE, thereby decreasing the value ofd. Since
d(E) = 0, it follows thatd(P) ≥ 0.
Remark. PolygonQ is the Minkowski sum ofP and a polygon centrally sym-
metric to P. Thus the inequality[Q] ≥ 4[P] is a direct consequence of the
Brunn-Minkowski inequality.

24. Obviouslyx ≥ 0. For x = 0 the only solutions are(0,±2). Now let (x,y) be
a solution withx > 0. Assume w.l.o.g. thaty > 0. The equation rewritten as
2x(1+ 2x+1) = (y − 1)(y + 1) shows that one of the factorsy ± 1 is divisible
by 2 but not by 4 and the other by 2x−1 but not by 2x; hencex ≥ 3. Thusy =
2x−1m + ε, wherem is odd andε = ±1. Plugging this in the original equation
and simplifying yields

2x−2(m2−8) = 1− εm. (∗)
As m = 1 is obviously impossible, we havem ≥ 3 and henceε = −1. Now (∗)
gives us 2(m2−8) ≤ 1+ m, implying m = 3 which leads tox = 4 andy = 23.
Thus all solutions are(0,±2) and(4,±23).

25. If x is rational, its digits repeat periodically starting at some point. If n is the
length of the period ofx, the sequence 2,22,23, . . . is eventually periodic modulo
n, so the corresponding digits ofx (i.e. the digits ofy) also make an eventually
periodic sequence, implying thaty is rational.

26. Considerg(n) = [ n
1]+ [ n

2]+ · · ·+[ n
n ] = n f (n) and defineg(0) = 0. Since for any

k the difference[ n
k ]− [ n−1

k ] equals 1 ifk dividesn and 0 otherwise, we obtain
that g(n) = g(n− 1) + d(n), whered(n) is the number of positive divisors of
n. Thusg(n) = d(1)+ d(2)+ · · ·+ d(n) and f (n) is the arithmetic mean of the
numbersd(1), . . . ,d(n). Therefore, (a) and (b) will follow if we show that each of
d(n+1) > f (n) andd(n+1) < f (n) holds infinitely often. Butd(n+1) < f (n)
holds whenevern +1 is prime, andd(n +1) > f (n) holds wheneverd(n +1) >
d(1), . . . ,d(n) (which clearly holds for infinitely manyn).

27. We first show that every fixed pointx of Q is in fact a fixed point ofP ◦ P.
Consider the sequence given byx0 = x andxi+1 = P(xi) for i ≥ 0. Assumexk =
x0. We know thatu− v dividesP(u)−P(v) for every two distinct integersu,v.
In particular,

di = xi+1− xi | P(xi+1)−P(xi) = xi+2− xi+1 = di+1

for all i, which together withdk = d0 implies |d0| = |d1| = · · · = |dk|. Suppose
that d1 = d0 = d 6= 0. Thend2 = d (otherwisex3 = x1 andx0 will never occur
in the sequence again). Similarly,d3 = d etc, and hencexi = x0 + id 6= x0 for all
i, a contradiction. It follows thatd1 = −d0, sox2 = x0 as claimed. Thus we can
assume thatQ = P◦P.
If every integert with P(P(t)) = t also satisfiesP(t) = t, the number of solutions
is clearly at most degP = n. Suppose thatP(t1) = t2, P(t2) = t1, P(t3) = t4 i
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P(t4) = t3, wheret1 6= t2,3,4 (but not necessarilyt3 6= t4). Sincet1 − t3 divides
t2− t4 and vice versa, we conclude thatt1− t3 =±(t2− t4). Assume thatt1− t3 =
t2−t4, i.e.t1−t2 = t3−t4 = u 6= 0. Since the relationt1−t4 =±(t2−t3) similarly
holds, we obtaint1 − t3 + u = ±(t1 − t3 − u) which is impossible. Therefore,
we must havet1 − t3 = t4 − t2, which gives usP(t1) + t1 = P(t3) + t3 = c for
somec. It follows that all integral solutionst of the equationP(P(t)) = t satisfy
P(t)+ t = c, and hence their number does not exceedn.

28. Every prime divisorp of x7−1
x−1 = x6 + · · ·+ x + 1 is congruent to 0 or 1 modulo

7. Indeed, Ifp | x−1, thenx7−1
x−1 ≡ 1+ · · ·+1≡ 7 (modp), so p = 7; otherwise

the order ofx modulop is 7 and hencep ≡ 1 (mod 7). Therefore every positive
divisord of x7−1

x−1 satisfiesd ≡ 0 or 1 (mod 7).
Now suppose(x,y) is a solution of the given equation. Sincey−1 andy4+ y3+

y2 + y +1 divide x7−1
x−1 = y5−1, we havey ≡ 1 or 2 andy4 + y3+ y2 + y +1≡ 0

or 1 (mod 7). However,y ≡ 1 or 2 implies thaty4+y3+y2+y+1≡ 5 or 3 (mod
7), which is impossible.

29. All representations ofn in the form ax + by (x,y ∈ Z) are given by(x,y) =
(x0 + bt,y0 − at), wherex0,y0 are fixed andt ∈ Z is arbitrary. The following
lemma enables us to determinew(n).
Lemma. The equalityw(ax + by) = |x|+ |y| holds if and only if:

(i) a−b
2 < y ≤ a+b

2 andx ≥ y− a+b
2 ; or

(ii) − a−b
2 ≤ y ≤ a−b

2 andx ∈ Z; or
(iii) − a+b

2 ≤ y < − a−b
2 andx ≤ y + a+b

2 .
Proof. Assume w.l.o.g. thaty ≥ 0. We havew(ax + by) = |x|+ y if and only if

|x+b|+ |y−a|≥ |x|+y and|x−b|+(y+a)≥ |x|+y, where the latter is ob-
viously true and the former clearly impliesy < a. Then the former inequality
becomes|x + b|− |x| ≥ 2y− a. We distinguish three cases: ify ≤ a−b

2 then
2y− a ≤ b and the previous inequality always holds; fora−b

2 < y ≤ a+b
2 it

holds if and only ifx ≥ y− a+b
2 ; and fory > a+b

2 it never holds.
Now letn = ax+by be a local champion withw(n) = |x|+ |y|. As in lemma, we
distinguish three cases:
(i) a−b

2 < y ≤ a+b
2 . Thenx+1≥ y− a+b

2 by the lemma, sow(n+a) = |x+1|+y
(becausen+a = a(x+1)+by). Sincew(n+a)≤ w(n), we must havex < 0.
Likewise,w(n−a) equals either|x−1|+y = w(n)+1 or |x+b−1|+a−y.
The conditionw(n−a) ≤ w(n) leads tox ≤ y− a+b−1

2 ; hencex = y− [ a+b
2 ]

andw(n) = [ a+b
2 ]. Now w(n− b) = −x + y−1= w(n)−1 andw(n + b) =

(x + b)+ (a−1− y) = a + b−1− [ a+b
2 ] ≤ w(n), son is a local champion.

Conversely, everyn = ax+by with a−b
2 < y≤ a+b

2 andx = y− [ a+b
2 ] is a local

champion. Thus we obtainb−1 local champions which are all distinct.
(ii) |y| ≤ a−b

2 . Now we conclude from the lemma thatw(n− a) = |x−1|+ |y|
andw(n + a) = |x + 1|+ |y|, and at least one of these two values exceeds
w(n) = |x|+ |y|. Thusn is not a local champion.
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(iii) − a+b
2 ≤ y < − a−b

2 . By takingx,y to −x,−y this case is reduced to case (i),
so we again haveb−1 local championsn = ax + by with x = y +[ a+b

2 ].
It is easy to check that the sets of local champions from cases(i) and (iii) coincide
if a and b are both odd (so we haveb− 1 local champions in total), and are
otherwise disjoint (then we have 2(b−1) local champions).

30. We shall show by induction onn that there exists an arbitrarily largem satisfying
2m ≡−m (modn). The casen = 1 is trivial; assume thatn > 1.
Recall that the sequence of powers of 2 modulon is eventually periodic with the
period dividingϕ(n); thus 2x ≡ 2y wheneverx ≡ y (modϕ(n)) andx andy are
large enough. Let us considerm of the formm ≡ −2k (mod nϕ(n)). Then the
congruence 2m ≡ −m (modn) is equivalent to 2m ≡ 2k (modn), and this holds
whenever−2k ≡ m ≡ k (modϕ(n)) andm,k are large enough. But the existence
of m andk is guartanteed by the inductive hypothesis forϕ(n), so the induction
is complete.





A

Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation ofset theory, algebra, logic,
geometry (including vectors), analysis, number theory (including divisibility and
congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement
of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B−C: indicates the relation ofbetweenness, i.e., thatB is be-
tween A and C (this automatically means thatA,B,C are different collinear
points).

◦ A = l1∩ l2: indicates thatA is the intersection point of the linesl1 andl2.

◦ AB: line throughA andB, segmentAB, length of segmentAB (depending on
context).

◦ [AB: ray starting inA and containingB.

◦ (AB: ray starting inA and containingB, but without the pointA.

◦ (AB): open intervalAB, set of points betweenA andB.

◦ [AB]: closed intervalAB, segmentAB, (AB)∪{A,B}.

◦ (AB]: semiopen intervalAB, closed atB and open atA, (AB)∪{B}.
The same bracket notation is applied to real numbers, e.g.,[a,b) = {x | a ≤ x <
b}.

◦ ABC: plane determined by pointsA,B,C, triangleABC (△ABC) (depending on
context).

◦ [AB,C: half-plane consisting of lineAB and all points in the plane on the same
side ofAB asC.

◦ (AB,C: [AB,C without the lineAB.
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◦ 〈−→a ,
−→
b 〉, −→a ·−→b : scalar product of−→a and

−→
b .

◦ a,b,c,α,β ,γ: the respective sides and angles of triangleABC (unless otherwise
indicated).

◦ k(O,r): circlek with centerO and radiusr.

◦ d(A, p): distance from pointA to line p.

◦ SA1A2...An , [A1A2 . . .An]: area ofn-gonA1A2 . . .An (special case forn = 3, SABC:
area of△ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (re-
spectively).

◦ Zn: the ring of residues modulon, n ∈ N.

◦ Zp: the field of residues modulop, p being prime.

◦ Z[x], R[x]: the rings of polynomials inx with integer and real coefficients respec-
tively.

◦ R∗: the set of nonzero elements of a ringR.

◦ R[α], R(α), whereα is a root of a quadratic polynomial inR[x]: {a+bα | a,b ∈
R}.

◦ X0: X ∪{0} for X such that 0/∈ X .

◦ X+, X−, aX +b, aX +bY : {x | x ∈ X ,x > 0}, {x | x ∈ X ,x < 0}, {ax+b | x ∈ X},
{ax + by | x ∈ X ,y ∈Y} (respectively) forX ,Y ⊆ R, a,b ∈ R.

◦ [x], ⌊x⌋: the greatest integer smaller than or equal tox.

◦ ⌈x⌉: the smallest integer greater than or equal tox.

The following is notation simultaneously used in differentconcepts (depending on
context).

◦ |AB|, |x|, |S|: the distance between two pointsAB, the absolute value of the num-
berx, the number of elements of the setS (respectively).

◦ (x,y), (m,n), (a,b): (ordered) pairx andy, the greatest common divisor of inte-
gersm andn, the open interval between real numbersa andb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible.
However, one nonstandard abbreviation stood out as particularly convenient:

◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).
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◦ LHS: left-hand side (of a given equation).

◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric
mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.





B

Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BLR Belarus
BRA Brazil
BUL Bulgaria
CAN Canada
CHN China
COL Colombia
CRO Croatia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GBR United Kingdom
GDR Germany, DR
GEO Georgia
GER Germany
GRE Greece

HKG Hong Kong
HUN Hungary
ICE Iceland
INA Indonesia
IND India
IRE Ireland
IRN Iran
ISR Israel
ITA Italy
JAP Japan
KAZ Kazakhstan
KOR Korea, South
KUW Kuwait
LAT Latvia
LIT Lithuania
LUX Luxembourg
MCD Macedonia
MEX Mexico
MON Mongolia
MOR Morocco
NET Netherlands
NOR Norway
NZL New Zealand
PER Peru
PHI Philippines

POL Poland
POR Portugal
PRK Korea, North
PUR Puerto Rico
ROM Romania
RUS Russia
SAF South Africa
SER Serbia
SIN Singapore
SLO Slovenia
SMN Serbia and Montenegro
SPA Spain
SVK Slovakia
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
USA United States
USS Soviet Union
UZB Uzbekistan
VIE Vietnam
YUG Yugoslavia


