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1

Problems

1.1 The Forty-Eighth IMO
Hanoi, Vietnam, July 19–31, 2007

1.1.1 Contest Problems

First Day (July 25)

1. Real numbersa1,a2, . . . ,an are given. For eachi (1≤ i ≤ n) define

di = max{a j | 1≤ j ≤ i}−min{a j | i ≤ j ≤ n}

and letd = max{di | 1≤ i ≤ n}.
(a) Prove that, for any real numbersx1 ≤ x2 ≤ ·· · ≤ xn,

max{|xi −ai| | 1≤ i ≤ n} ≥ d
2

. (∗)

(b) Show that there are real numbersx1 ≤ x2 ≤ ·· · ≤ xn such that equality holds
in (∗).

2. Consider five pointsA,B,C,D and E such thatABCD is a parallelogram and
BCED is a cyclic quadrilateral. Letℓ be a line passing throughA. Suppose that
ℓ intersects the interior of the segmentDC at F and intersects lineBC at G.
Suppose also thatEF = EG = EC. Prove thatℓ is the bisector of angleDAB.

3. In a mathematical competition some competitors are friends. Friendship is al-
ways mutual. Call a group of competitors aclique if each two of them are friends.
(In particular, any group of fewer than two competitors is a clique.) The number
of members of a clique is called itssize.
Given that, in this competition, the largest size of a cliqueis even, prove that the
competitors can be arranged in two rooms such that the largest size of a clique
contained in one room is the same as the largest size of a clique contained in the
other room.
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Second Day (July 26)

4. In triangleABC the bisector of angleBCA intersects the circumcircle again atR,
the perpendicular bisector ofBC atP, and the perpendicular bisector ofAC atQ.
The midpoint ofBC is K and the midpoint ofAC is L. Prove that the triangles
RPK andRQL have the same area.

5. Let a andb be positive integers. Show that if 4ab− 1 divides(4a2− 1)2, then
a = b.

6. Letn be a positive integer. Consider

S =
{
(x,y,z) | x,y,z ∈ {0,1, . . . ,n}, x + y + z > 0

}

as a set of(n+1)3−1 points in three-dimensional space. Determine the smallest
possible number of planes, the union of which containsS but does not include
(0,0,0).

1.1.2 Shortlisted Problems

1. A1 (NZL) IMO1 Given a sequencea1,a2, . . . ,an of real numbers, for eachi (1≤
i ≤ n) define

di = max{a j : 1≤ j ≤ i}−min{a j : i ≤ j ≤ n}

and letd = max{di : 1≤ i ≤ n}.
(a) Prove that for arbitrary real numbersx1 ≤ x2 ≤ ·· · ≤ xn,

max{|xi −ai| : 1≤ i ≤ n} ≥ d
2
. (1)

(b) Show that there exists a sequencex1 ≤ x2 ≤ ·· · ≤ xn of real numbers such
that we have equality in (1).

2. A2 (BUL) Consider those functionsf : N → N which satisfy the condition

f (m+ n)≥ f (m)+ f ( f (n))−1, for all m,n ∈ N.

Find all possible values off (2007).

3. A3 (EST) Let n be a positive integer, and letx andy be positive real numbers
such thatxn + yn = 1. Prove that

(
n

∑
k=1

1+ x2k

1+ x4k

)(
n

∑
k=1

1+ y2k

1+ y4k

)

<
1

(1− x)(1− y)
.

4. A4 (THA) Find all functionsf : R+ → R+ such that

f (x + f (y)) = f (x + y)+ f (y)

for all x,y ∈ R+.
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5. A5 (CRO) Let c > 2, and leta(1),a(2), . . . be a sequence of nonnegative real
numbers such that

a(m+ n) ≤ 2a(m)+2a(n) for all m,n ≥ 1, and

a(2k) ≤ 1
(k +1)c for all k ≥ 0.

Prove that the sequencea(n) is bounded.

6. A6 (POL) Let a1,a2, . . . ,a100 be nonnegative real numbers such thata2
1 + a2

2 +
· · ·+ a2

100= 1. Prove that

a2
1a2 + a2

2a3 + · · ·+ a2
100a1 <

12
25

.

7. A7 (NET) IMO6 Let n > 1 be an integer. Consider the following subset of the
space:

S = {(x,y,z)|x,y,z ∈ {0,1, . . . ,n},x + y + z > 0} .

Find the smallest number of planes that jointly contain all(n+1)3−1 points of
S but none of them passes through the origin.

8. C1 (SER) Let n be an integer. Find all sequencesa1,a2, . . . ,an2+n satisfying the
following conditions:
(i) ai ∈ {0,1} for all 1≤ i ≤ n2 + n;
(ii) ai+1+ai+2+ · · ·+ai+n < ai+n+1+ai+n+2+ · · ·+ai+2n for all 0≤ i ≤ n2−n.

9. C2 (JAP) A unit square is dissected inton > 1 rectangles such that their sides
are parallel to the sides of the square. Any line, parallel toa side of the square
and intersecting its interior, also intersects the interior of some rectangle. Prove
that in this dissection, there exists a rectangle having no point on the boundary
of the square.

10. C3 (NET) Find all positve integersn, for which the numbers in the setS =
{1,2, . . . ,n} can be colored red and blue, with the following condition being
satisfied: the setS×S×S contains exactly 2007 ordered triples(x,y,z) such that
(i) x,y,z are of the same color and
(ii) x + y + z is divisible byn.

11. C4 (IRN) Let A0 = {a1, . . . ,an} be a finite sequence of real numbers. For each
k ≥ 0, from the sequenceAk = (x1, . . . ,xn) we construct a new sequenceAk+1 in
the following way:
(i) We choose a partition{1, . . . ,n}= I∪J, whereI andJ are two discjoint sets,

such that the expression ∣
∣
∣
∣
∣
∑
i∈I

xi − ∑
j∈J

x j

∣
∣
∣
∣
∣

attains the smallest possible value. (We allow the setsI or J to be empty;
in this case the corresponding sum is 0.) If there are severalsuch partitions,
one is chosen arbitrarily.
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(ii) We setAk+1 = (y1, . . . ,yn), whereyi = xi +1 if i ∈ I, andyi = xi −1 if i ∈ J.
Prove that for somek, the sequenceAk contains an elementx such that|x| ≥ n/2.

12. C5 (ROM) In the Cartesian coordinate plane define the strip

Sn = {(x,y) : n ≤ x < n +1}

for every integern. Assume that each stripSn is colored either red or blue, and
let a andb be two distinct positive integers. Prove that there exists arectangle
with side lengthsa andb such that its vertices have the same color.

13. C6 (RUS)IMO3 In a mathematical competition some competitors are friends;
friendship is always mutual. Call a group of competitors aclique if each two
of them are friends. The number of members in a clique is called its size.
It is known that the largest size of a clique is even. Prove that the competitors
can be arranged in two rooms such that the largest size of a clique in one room
is the same as the largest size of a clique in the other room.

14. C7 (AUT) Let α < 3−
√

5
2 be a positive real number. Prove that there exist posi-

tive integersn andp such thatp > α ·2n and for which one can select 2p pairwise
distinct subsetsS1, . . . ,Sp,T1, . . . ,Tp of the set{1,2, . . . ,n} such thatSi ∩Tj 6= /0
for all 1≤ i, j ≤ p.

15. C8 (UKR) Given a convexn-gonP in the plane, for every three vertices ofP,
consider the triangle determined by them. Call such a triangle good if all its sides
are of unit length. Prove that there are not more than 2n/3 good triangles.

16. G1 (CZE) IMO4 In a triangleABC the bisector of angleBCA intersects the cir-
cumcircle again atR, the perpendicular bisector ofBC atP, and the perpendicular
bisector ofAC atQ. The midpoint ofBC is K and the midpoint ofAC is L. Prove
that the trianglesRPK andRQL have the same area.

17. G2 (CAN) Given an isosceles triangleABC, assume thatAB = AC. The midpoint
of the sideBC is denoted byM. Let X be a variable point on the shorter arcMA
of the circumcircle of triangleABM. Let T be the point in the angle domain
BMA for which∠T MX = 90◦ andT X = BX . Prove that∠MT B−∠CTM does
not depend onX .

18. G3 (UKR) The diagonals of a trapezoidABCD intersect at pointP. PointQ lies
between the parallel linesBC andAD such that∠AQD = ∠CQB, and the line
CD separates the pointsP andQ. Prove that∠BQP = ∠DAQ.

19. G4 (LUX) IMO2 Consider five pointsA,B,C,D andE such thatABCD is a paral-
lelogram andBCED is a cyclic quadrilateral. Letℓ be a line passing throughA.
Suppose thatℓ intersects the interior of the segmentDC at F and intersects line
BC atG. Suppose also thatEF = EG = EC. Prove thatℓ is the bisector of angle
DAB.

20. G5 (GBR) Let ABC be a fixed triangle, and letA1, B1, C1 be the modpoints
of sidesBC, CA, AB respectively. LetP be a variable point on the circumcircle.
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Let linesPA1, PB1, PC1 meet the circumcircle again atA′, B′, C′ respectively.
Assume that the pointsA, B, C, A′, B′, C′ are distinct, and linesAA′, BB′, CC′

form a triangle. Prove that the area of this triangle does notdepend onP.

21. G6 (USA) Let ABCD be a convex quadrilateral, and let pointsA1, B1, C1, and
D1 lie on sidesAB, BC, CD, andDA respectively. Consider the areas of triangles
AA1D1, BB1A1, CC1B1, andDD1C1; let S be the sum of the two smallest ones,
and letS1 be the area of the quadrilateralA1B1C1D1.
Find the smallest positive real numberk such thatkS1 ≥ S holds for every convex
quadrilateralABCD.

22. G7 (IRN) Given an acute triangleABC with anglesα, β , andγ at verticesA, B,
andC respectively such thatβ > γ, let I be its incenter, andR the circumradius.
Point D is the foot of the altitude from vertexA. PointK lies on lineAD such
thatAK = 2R, andD separatesA andK. Finally linesDI andKI meet sidesAC
andBC at E andF respectively. Prove that ifIE = IF thenβ ≤ 3γ.

23. G8 (POL) A point P lies on the sideAB of a convex quadrilateralABCD. Let ω
be the incircle of the triangleCPD, and letI be its incenter. Suppose thatω is
tangent to the incircles of trianglesAPD andBPC at pointsK andL, respectively.
Let the linesAC andBD meet atE, and let the linesAK andBL meet atF. Prove
that the pointsE, I, andF are colinear.

24. N1 (AUT) Find all pairs(k,n) of positive integers for which 7k − 3n divides
k4 + n2.

25. N2 (CAN) Let b,n > 1 be integers. Suppose that for eachk > 1 there exists an
integerak such thatb− an

k is divisible byk. Prove thatb = An for some integer
A.

26. N3 (NET) Let X be a set of 10000 integers, none of which is divisible by 47.
Prove that there exists a 2007-element subsetY of X such thata−b + c−d + e
is not divisible by 47 for anya,b,c,d,e ∈ Y .

27. N4 (POL) For every integerk ≥ 2, prove that 23k divides the number
(

2k+1

2k

)

−
(

2k

2k−1

)

but 23k+1 does not.

28. N5 (IRN) Find all surjective functionsf : N → N such that for everym,n ∈ N
and every primep, the numberf (m+ n) is divisible byp if and only if f (m)+
f (n) is divisible byp.

29. N6 (GBR) IMO5 Let k be a positive integer. Prove that the number(4k2−1)2 has
a positive divisor of the form 8kn−1 if and only if k is even.

30. N7 (IND) For a primep and a positive integern, denote byνp(n) the exponent
of p in the prime factorization ofn!. Given a positive integerd and a finite set
{p1, . . . , pk} of primes, show that there are infinitely many positive integersn
such thatd|νpi(n) for all 1≤ i ≤ k.





2

Solutions



8 2 Solutions

2.1 Solutions to the Shortlisted Problems of IMO 2007

1. (a) Assume thatd = dm for some indexm, and letk andl be the indeces such that
k ≤ m ≤ l such thatdm = ak −al. Thendm = ak −al ≤ (ak − xk)+ (xl −al)
henceak − xk ≥ d/2 orxl −al ≥ d/2. The claim follows immediately.

(b) LetMi = max{a j : 1≤ j ≤ i} andmi = min{a j : i ≤ j ≤ n}. Setxi = mi+Mi
2 .

Clearly, mi ≤ ai ≤ Mi and both(mi) and (Mi) are non-decreasing. Fur-
thermore,− di

2 = mi−Mi
2 = xi −Mi ≤ xi − ai. Similarly xi − ai ≤ di

2 , hence

max{|xi − ai| : 1 ≤ i ≤ n} ≤ max
{

di
2 ,1≤ i ≤ n

}

. Thus, the equality holds

in (1) for the sequence{xi}.

2. Placingn = 1 we getf (m+1)≥ f (m)+ f ( f (1))−1≥ f (m) hence the function
is non-decreasing. Letn0 be the smallest integer such thatf (n0) > 1. If f (n) =
n + k for somek,n ≥ 1 then placingm = 1 gives thatf ( f (n)) = f (n + k) ≥
f (k)+ f ( f (n))−1 which impliesf (k) = 1. We immediately getk < n0. Choose
maximalk0 such that there existsn ∈ N for which f (n) = n + k0. Then we have
2n+k0≥ f (2n)≥ f (n)+ f ( f (n))−1= n+k0+ f (n+k0)−1≥ n+k0+ f (n)−
1 = 2n +(2k0−1) hence 2k0−1 ≤ k0, or k0 ≤ 1. Thereforef (n) ≤ n + 1 and
f (2007) ≤ 2008.
Now we will prove thatf (2007) can be any of the numbers 1,2, . . . ,2008. Define
the functions

f j(n) =

{
1, n ≤ 2007− j,
n + j−2007, otherwise.

, j ≤ 2007, and

f2008(n) =

{
n, 2007∤ n,
n +1, 2007| n.

It is easy to verify thatf j satisfy the conditions of the problem forj = 1, 2, . . . ,
2008.

3. The inequality1+t2

1+t4
< 1

t holds for allt ∈ (0,1) because it is equivalent to 0< t4−
t3− t +1 = (1− t)(1− t3). Applying it to t = xk and summing overk = 1, . . . ,n

we get∑n
k=1

1+x2k

1+x4k < ∑n
k=1

1
xk = xn−1

xn(x−1) = yn

xn(1−x) . Writing the same relation for
y and multiplying by this one gives the desired inequality.

4. Notice thatf (x) > x for all x. Indeed,f (x+ f (y)) 6= f (x+ y) and if f (y) < y for
somey, settingx = y− f (y) yields to a contradiction.
Now we will prove that f (x) − x is injective. If we assume thatf (x) − x =
f (y)− y for somex 6= y we would havex + f (y) = y + f (x) hencef (x + y)+
f (y) = f (x + y) + f (x) implying f (x) = f (y), which is impossible. From the
functional equation we conclude thatf ( f (x)+ f (y))− ( f (x)+ f (y)) = f (x+y),
hencef (x)+ f (y) = f (x′)+ f (y′) wheneverx+y = x′+y′. In particular, we have
f (x)+ f (y) = 2 f ( x+y

2 ).
Our next goal is to prove thatf is injective. If f (x) = f (x+h) for someh > 0 then
f (x)+ f (x+2h) = 2 f (x+h) = 2 f (x) hencef (x) = f (x+2h), and by induction
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f (x+nh) = f (x). Therefore, 0< f (x+nh)− (x+nh)= f (x)− x−nh for every
n, which is impossible.
We now havef ( f (x)+ f (y)) = f ( f (x)+y)+ f (y) = 2 f ( f (x)

2 +y) and by symme-

try f ( f (x)+ f (y)) = 2 f ( f (y)
2 + x). Hence f (x)

2 + y = f (y)
2 + x, thus f (x)−2x = c

for somec ∈ R. The functional equation forcesc = 0. It is easy to verify that
f (x) = 2x satisfies the given relation.

5. Defininga(0) to be 0 the relations in the problem remain to hold. It followsby
induction thata(n1+n2 + · · ·+nk) ≤ 2a(n1)+22a(n2)+ · · ·+2ka(nk). We also
havea(n1+n2+ · · ·+n2i)≤ 2a(n1+ · · ·+n2i−1)+2a(n2i−1+1+ · · ·+n2i)≤ ·· · ≤
2i(a(n1)+ · · ·+ a(n2i)). For integerk ∈ [2i,2i+1) we have

a(n1 + · · ·+ nk) = a(n1+ · · ·+ nk +0+ · · ·+0
︸ ︷︷ ︸

2i+1−k

)

≤ 2i+1(a(n1)+ · · ·+ a(nk)+ (2i+1− k)a(0))

≤ 2k(a(n1)+ · · ·+ a(nk)).

Assume now thatN ∈ N is given and letN = ∑K
i=0 bi2i be its binary representa-

tion (K ∈ N, bi ∈ {0,1}). For each increasing sequence(τn)n∈N of integers we
have

a(N) = a

(

∑
n

max{τn,K}
∑

i=τn−1

bi2
i

)

≤ ∑
n

2na

(
max{τn,K}

∑
i=τn−1

bi2
i

)

≤ ∑
n

2n ·2(τn − τn−1 +1)
max{τn,K}

∑
i=τn−1

a(2i)

≤ ∑
n

(τn − τn−1+1)2 2n+1

(τn−1 +1)c ≤ ∑
n

2n+1
(

τn+1
τn−1+1

)2

(τn−1 +1)c−2 .

Choosingτn = 2αn−1 we geta(N) ≤ 22α ·22 ∑n 2n−1−α(c−2)(n−1). Thus, choos-
ing any α > 1

c−2 would give us the sequenceτn for which the last series is
bounded, which proves the required statement.

6. Using the Cauchy-Schwarz inequality we can bound the left-hand side in the fol-
lowing way: 1

3[a1(a2
100+2a1a2)+a2(a2

1+2a2a3)+ · · ·+a100(a2
99+2a100a1)]≤

1
3

(
a2

1 + · · ·+ a2
100

)1/2·
(

∑100
k=1(a

2
k +2ak+1ak+2)

)1/2
(the indeces are modulo 100).

It suffices to show
100

∑
k=1

(a2
k +2ak+1ak+2)

2 ≤ 2.

Each term of the last sum can be seen asa4
k + 4a2

k+1a2
k+2 + 4a2

k(ak+1 · ak+2) ≤
(a4

k + 2a2
ka2

k+1 + 2a2
ka2

k+2) + 4a2
k+1a2

k+2. The required inequality now follows
from ∑100

k=1(a
4
k +2a2

ka2
k+1+2a2

ka2
k+2)≤ (a2

1+ · · ·+a2
100)

2 = 1, and∑100
k=1 a2

ka2
k+1 ≤

(a2
1 + a2

3+ · · ·+ a2
99) · (a2

2 + a2
4+ · · ·+ a2

100) ≤ 1
4

(
a2

1 + · · ·+ a2
100

)2
= 1

4.
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7. The union of the planesx = i, y = i, andz = i for 1≤ i ≤ n containsS and doesn’t
contain 0. Assume now that there exists a collection{aix+biy+ciz+di = 0 : 1≤
i ≤ N} of N < 3n planes with the described properties. Consider the polynomial
P(x,y,z) = ∏N

i=1(aix + biy + ciz+ di).
Let δ0 = 1, and choose the numbersδ1, . . . ,δn such that∑n

i=0 δiim = 0 for m =
0,1,2, . . . ,n− 1 (here we assume that 00 = 1). The choice of these numbers is
possible because the given linear system in(δ1, . . . ,δn) has the Vandermonde
determinant.
Let S = ∑n

i=0 ∑n
j=0 ∑n

k=0 δiδ jδkP(i, j,k). By the construction ofP we know that
P(0,0,0) 6= 0 andP(i, j,k) = 0 for all other choices ofi, j,k ∈ {0,1, . . . ,n}.
ThereforeS = δ 3

0 P(0,0,0). On the other hand expandingP as P(x,y,z) =

∑α+β+γ≤N pα ,β ,γxα yβ zγ we get:

S =
n

∑
i=0

n

∑
j=0

n

∑
k=0

δiδ jδk ∑
α+β+γ≤N

pα ,β ,γ iα jβ kγ

= ∑
α+β+γ≤N

pα ,β ,γ

(
n

∑
i=0

δii
α

)(
n

∑
j=0

δ j jβ

)(
n

∑
k=0

δkkγ

)

= 0

because for every choice ofα,β ,γ at least one of them is less thann making
the corresponding sum in the last expression equal to 0. Thisis a contradiction,
hence the required number of planes is 3n.

8. Let Sm
k = ak + ak+1 + · · ·+ am. SinceSn

1 < S2n
n+1 < · · · < Sn2+n

n2+1
and since each

of thesen +1 numbers belongs to{0,1, . . . ,n} we have thatS(i+1)n
in+1 = i. We im-

mediately geta1 = a2 = · · · = an = 0 andan2+1 = an2+2 = · · · = an2+n = 1. For

every 0≤ k ≤ n, consider the sequencelk = (Sk+n
k+1,S

k+2n
k+n+1, . . . ,S

k+n2

k+n2−n+1
). The

sequence is strictly increasing, and its elements are from the set{0,1,2, . . . ,n}.
Let m be the number that doesn’t appear inlk, andUk the total sum of the
elements oflk. Sincea1 + · · ·+ an2+n = Sn

1 + S2n
n+1 + · · · + Sn2+n

n2+1
= n(n+1)

2 =

Sk
1 +Uk + Sn2+n

k+n2+1
= Uk + n− k we getm = n− k. Therefore

Sk+(s+1)n
k+sn+1 =

{
s, if s < n− k,
s+1, if s ≥ n− k.

Using this we get

Sk+(s+1)n
k+sn+1 = Sk−1+(s+1)n

k−1+sn+1 + ak+(s+1)n−ak−1+sn+1

= Sk−1+(s+1)n
k+sn + ak+(s+1)n−ak+sn,

hence fors+k < n we haveSk+(s+1)n
k+sn+1 = Sk−1+(s+1)n

k+sn = s, and fors+k ≥ n+1 we

haveSk+(s+1)n
k+sn+1 = Sk−1+(s+1)n

k+sn = s+1. Henceak+(s+1)n = ak+sn if eithers+k < n

or s + k ≥ n + 1. If s + k = n thenSk−1+(s+1)n
k+sn = s while Sk+sn+1k +(s+1)n =
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s + 1. henceak+(s+1)n = 1 andak+sn = 0. Now, by induction we can easily get
that for 1≤ u ≤ n and 0≤ v ≤ n:

au+vn =

{
0, if u + v ≤ n,
1, if u + v > n.

It is easy to verify that the above sequence satisfies the required properties.

9. Assume the contrary. Consider the minimal such dissection of the squareABCD
(i.e. the dissection with the smallest number of rectangles). No two rectangles in
this minimal dissection can share an edge. LetAMNP be the rectangle contianing
the vertexA, and letUBVW be the rectangle containingB. Assume thatMN ≤
BV . Let MXY Z be another rectangle containing the pointM (this one could be
the same asUBVW ). We can either haveMN > MZ or MZ > MN. In the first
case the rectangle containing the pointZ would have to touch the sideCD (it
can’t touchBC becauseWU ≥ NM > MZ). The lineMN doesn’t intersect any
of the interiors of the rectangles. Contradiction
If MZ > MN consider the rectangle containing the pointN. It can’t touchAD
because it can’t share the entire side withAMNP. Hence it has to touchCD and,
again,MN would be a line that doesn’t intersect any of the interiors. Contradic-
tion.

10. LetT = {(x,y,z) ∈ S× S× S : x + y + z is divisible byn}. For any pair(x,y) ∈
S×S there exists uniquez ∈ S such that(x,y,z) ∈ T , hence|T |= n2. Let M ⊆ T
be the set of those triples that have all elements of the same color. Denote by
R andB the sets of red and blue numbers and assume that the numberr of red
numbers is not less thann/2. Consider the following functionF : T \M →R×B:
If (x,y,z) ∈ T \M, thenF(x,y,z) is defined to be one of the pairs(x,y), (y,z),
(z,x) that belongs toR×B (there exists exactly one such pair). For each element
(p,q) ∈ R× B there is uniques ∈ S for which n|p + q + s. ThenF(p,q,s) =
F(s, p,q) = F(q,s, p) = (p,q). Hence|T \M| = 3|R×B|= 3r(n− r) and|T | =
n2−3r(n− r) = n2−3rn +3r2.
It remains to solven2−3nr+3r2 = 2007 in the setN×N. First of all,n = 3k for
somek ∈ N. Therefore 9k2−9kr +3r2 = 2007 and we see that 3|r. Let r = 3s.
The equation becomesk2−3kr + 3r2 = 223. From our assumptionr ≥ n/2 we
get 223= k2 − 3kr + 3r2 = (k − r)(k − 2r) + r2 ≤ r2. Furthermore 4· 223=
(2k−3r)2 +3r2 ≥ 3r2 ≥ 3·223. Hencer ∈ {15,16,17}. Forr = 15 andr = 16,
4·223−3r2 is not a perfect square, and forr = 17 we get(2k−3r)2 = 25 hence
2k−3 ·17= ±5. Bothk = 28 andk = 23 lead to solutions(n,r) = (84,51) and
(n,r) = (69,51).

11. Denote byak,1,ak,2, . . . ,ak,n the elements ofAk, and letQk = ∑n
i=1 a2

k,i. Assume
the contrary, that|ak,i|< n/2 for all k, i. This means that the number of elements
in
⋃

k∈N Ak is finite. Hence there are differentp,q ∈ N such thatAp = Aq. For
any I ⊆ {1,2, . . . ,n}, denoteSk(I) = ∑i∈I ak,i. Let (Ik,Jk) be the partition that
was chosen in constructingAk+1 from Ak.
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Qk+1−Qk = ∑
i∈Ik

((ak,i +1)2− (ak,i)
2)+ ∑

j∈Jk

((ak, j −1)2− (ak, j)
2)

= n +2(Sk(Ik)−Sk(Jk)) = n−2min
I,J

|Sk(I)−Sk(J)| ,

where the last minimum is taken over all partitions(I,J) of the set{1,2, . . . ,n}.
However, for eachk, it is easy to inductively build a partition(I′,J′) for which
|Sk(I′)−Sk(J′)|< n/2. TakeI0 andJ0 to be empty sets, and assume we made the
partitionIl , Jl of {1, . . . , l} in such a way that|Sk(Il)−S j(Il)| < n/2. Now, take

(Il+1,Jl+1) =

{
(Il ∪{l +1},Jl), if S(Il) ≤ S(Jl),
(Il ,Jl ∪{l +1}), if S(Il) > S(Jl).

ThereforeQk+1 −Qk > n− 2n
2 = 0 andQk is increasing. This contradicts the

previously established fact thatAp = Aq for somep 6= q.

12. Assume thata > b, a = a1d, b = b1d, (a1,b1) = 1. There existp,q ∈ Z such
that pa + qb = d. We may assume that the pairs(Sn,Sn+a) and (Sn,Sn+b) are
of different colors since otherwise the statement would follow immediately. By
induction we get that(Sn,Sn+ua+vb) are of the same color if and only ifu + v
is even. Fromab1 = ba1 we concludeSab1 = Sba1 which means thata1 andb1

must be of the same parity, hence they are both odd anda1 ≥ 3. Furthermore,
pa1 + qb1 = 1 gives 2∤ p + q which implies that the stripsSn+d = Sn+pa+qb and
Sn are of different colors. NowSn andSn+2d have the same color.
Consider the rectangleMNPQ such
that MQ = NP = a, MN = PQ =
b and the difference between thex
coordinates ofM and Q (and con-
sequently N and P) is 2d. It suf-
fices to show that we can choose
a rectangle in such a way thatM
and N are of the same color. Simple O

M

N x

P

Q

2d

y

calculation shows that the difference of thex coordinates ofM andN is τ =√
a2

1−4
a1

b 6∈ Q. Let s be one of longest single-colored (say red) segments on the
x-axis. The translations′ of s to the left byτ has non-integer end-points, hence
it can’t be single-colored. Thus, there is a red point ons′ – choose this point to
beN. Other points are now easily determined.
Remark. We used the facta1 > 2 which is implied bya 6= b. The statement
doesn’t hold for squares (a counter-example is unit square).

13. Consider one of the cliques of maximal size 2n and put its members in a roomX .
Call these studentsΠ -students. Put the others in the roomY . Let d(X) andd(Y )
be the maximal sizes of cliques inX andY in a given moment. If a student moves
from X two Y , thend(X)− d(Y) decreases by 1 or 2. Repeating this procedure
we can make this difference 0 or−1.
Assume that it is−1 andd(X) = l, d(Y ) = l + 1. If the roomY contains aΠ -
student that doesn’t belong to some ofY -cliques of the sizel + 1, after moving
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that student toX we will manage to haved(X) = d(Y ). Therefore assume that all
2n− l Π -students inY belong to allY -cliques of sizel +1. Each such clique has
to contain 2(l−n)+1≥ 1 non-Π -students. Take an arbitrary clique inY of size
l + 1 and move a non-Π -student from it toX . Repeat this procedure as long as
there arel +1 cliques inY . We claim thatd(X) remainsl after each such move.
If not, considerl + 1-clique in X . All its members would know all of 2n− l
Π -students inY . Together with them they would form 2n + 1 clique which is
impossible. Hence we will end up with the configuration withd(X) = d(Y ) = l.

14. Assume thatA1, . . . ,Ak are disjointm-element subsets of{1, . . . ,n}. Let

S = {S ⊆ {1, . . . ,n} : S∩Ai 6= /0 for all i} and

T = {T ⊆ {1, . . . ,n} : T ⊇ Ai for somei, butT ∩A j = /0 for somej}.

For eachA ∈ S andB ∈ T we haveA∩B 6= /0. It suffices to prove:

Lemma. For k = k(m) =
[

2m · log 3−
√

5
2

]

andn = mk we have

lim
m→∞

|S |
2n = lim

m→∞

|T |
2n =

3−
√

5
2

.

Proof. For simplicity denoteρ = log 3+
√

5
2 . For everyi, each set inS must

contain one of 2m − 1 non-empty subsets ofAi. Hence|S | = (2m − 1)k.
Using the substitutionr = 2m we get

lim
m→∞

|S |
2km

= lim
m→∞

(2m −1)k

2mk
= lim

r→∞

(r−1)ρr

rρr

= lim
r→∞

(

1− 1
r

)ρr

= e−ρ =
3−

√
5

2
.

In order to calculate|T |, notice thatT = U \ (U ∩S ) whereU = {T ⊆
{1, . . . ,n} : T ⊇ Ai for somei}. Obviously,|U c| = (2m − 1)k which gives
us |U | = 2mk − (2m −1)k. Furthermore,|U ∩S | = |S |− |S \U |. From
S \U = {T ⊆ {1, . . . ,n} : T ∩Ai 6= 0 andT ∩Ai 6= Ai for all i} we get|S \
U | = (2m −2)k. Using the substitutionr = 2m we get

lim
m→∞

|T |
2n = lim

m→∞

2km −2(2m−1)k +(2m −2)k

2mk

= 1−2e−ρ + lim
r→∞

(r−2)ρr

rρr = 1−2e−ρ + lim
r→∞

(

1− 2
r

)ρr

= 1−2e−ρ + e−2ρ = e−ρ =
3−

√
5

2
.

15. For each vertexV of P consider all good triangles whose one vertex isV . All
the vertices of these triangles belong to the unit circle centered atV . Label them
counter-clockwise asV1, . . . ,Vi. Denote byf (V ) andl(V ) the first and the last of
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these vertices (f (V ) = V1, l(V ) = Vi). Denote byTf (V ) the good triangle with
verticesV and f (V ). Tl(V ) is defined analogously. We callTf (V ) and Tl(V )
the trianglesassociated with V (they might be the same). Letα be the total
number of associated triangles, andt the total number of good triangles. It is
enough to prove that each good triangle is associated with atleast three vertices.
Indeed this would imply 3t ≤ α ≤ 2n. It suffices to show that for an arbitrary
good triangleABC oriented counter-clockwise we haveA = l(B) or A = f (C).
Assume thatA 6= l(B) andA 6= f (C). Thenl(B) and f (C) would belong to the
half plane[BC,A. DefineA′ = l(B) if ∠ABl(B)≤ 60◦. If this angle is bigger than
60◦ defineA′ to be the third vertex ofTl(B). Similarly we defineA′′. We have
∠ABA′ < 60◦, ∠ACA′′ < 60◦, henceA belongs to the interior of the rectangle
A′BCA′′ andP can’t be convex. This concludes the proof of our claim.
Remark. It is easy to refine the proof to show thatt ≤ [2

3(n− 1)]. This result
is sharp and the example of 3k + 1-gon with 2k good triangles is not hard to
construct: rotate a rhombusABCD (AB = BC = DA = 1) aroundA by small
anglesk times.

16. LetO be the circumcenter of the triangleABC. We know that∠CPK = ∠CQL
henceSRPK

SRQL
= RP·PK

RQ·QL . Since△PKC ∼ △QLC we havePK
QL = PC

QC . SinceROC is

isosceles and∠OPR = ∠OQC we get△ROQ ∼= △COP and RQ = PC. This
finally implies SRPK

SRQL
= 1.

17. LetY be the midpoint ofBT . ThenMY‖CT andTY ⊥ XY henceT , Y , M, X be-
long to a circle. Thus∠MT B−∠CTM = ∠MXY −∠YMT = ∠MXY −∠TXY =
∠MXY −∠YXB = ∠MXB = ∠BAM.

18. Let X be the point on the linePQ such thatXC‖AQ. ThenXC : AQ = CP :
PA = BC : AD which implies△BCX ∼ △DAQ. Hence∠DAQ = ∠BCX and
∠BXC = ∠DQA = ∠BQC. ThereforeB,C, Q, X belong to a circle which implies
that∠BCX = ∠BQX = ∠BQP.

19. LetK andL be the midpoints ofFC andCG respectively. ThenEK ⊥ CD and
EL ⊥ BC henceKL is the Simson’s line of the triangleBCD and intersectsBD at
pointM such thatEM ⊥ BD. We also have thatKL‖l andKL bisects the sideCA
of △ACG. HenceKL passes through the intersection of the diagonals ofABCD
thusKL bisectsBD. ThereforeDM = MB andDEB is isosceles. From△DEB ∼
△KEL we get thatEK = EL henceCF =CG. Thus∠DAF = ∠FGC =∠GFC =
∠FAB.

20. Denote byA0, B0, andC0 the given intersection points. Applying the Pascal’s
theorem to the pointsAPCC′BA′ gives us thatB0 ∈C1A1. Similarly we getC0 ∈
A1B1 and A0 ∈ B1C1. From B0A1‖AB1 we get C0B0

C0A = C0A1
C0B1

. SinceBA1‖B1A0

we getC0A1
C0B1

= C0B
C0A0

. HenceC0B0
C0A = C0B

C0A0
or C0B0 ·C0A0 = C0A ·C0B. Therefore

SA0B0C0 = SABC0. However,SABC0 = SABB1 (becauseA1B1‖AB) henceSA0B0C0 =
SABB1 = 1

2SABC.

21. Let us prove thatS1 ≥ S, i.e. thatk ≤ 1.
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Lemma. If X ′, Y ′, Z′ are the points on the sidesYZ, ZX , XY of △XYZ then
SX ′Y ′Z′ ≥ min{SXY ′Z′ ,SYZ′X ′ ,SZX ′Y ′}.

Proof. Denote byX1, Y1, Z1 the midpoints ofYZ, ZX , XY . If two of X ′, Y ′,
Z′ belong to one of the trianglesXY1Z1, Y Z1X1, ZX1Y1, then the state-
ment follows immediately. Indeed, ifY ′, Z′ ∈ XY1Z1, thenY ′Z′ intersects
the altitude fromX to YZ at the pointQ inside △XY1Z1, which forces
d(X ,Z′Y ′) ≤ d(X ,Z1Y1) = 1

2d(X ,YZ) ≤ d(X ′,Y ′Z′). Assume now, w.l.o.g.
that X ′ ∈ X1Z, Y ′ ∈ Y1X , Z′ ∈ Z1Y . Thend(Z′,X ′Y ′) > d(Z1,X ′Y ′), hence
SX ′Y ′Z′ > SX ′Y ′Z1

. Similarly SX ′Y ′Z1
> SX ′Y1Z1

. SinceSX ′Y1Z1
= SX1Y1Z1 we

haveSX ′Y ′Z′ > SX1Y1Z1 = 1
4SXY Z, henceSX ′Y ′Z′ > min{SXY ′Z′ ,SY Z′X ′ ,SZX ′Y ′}.

If SA1B1C1 ≥ min{SA1BB1,SB1CC1} andSA1C1D1 ≥ min{SC1DD1, SD1AA1} then the
problem is trivial. The same holds forSA1B1D1 andSB1C1D1.
Without loss of generality assume thatSA1B1C1 < min{SA1BB1, SB1CC1} and
SA1B1D1 < min{SA1BB1, SAA1D1}. Assume also thatSA1B1C1 ≤ SA1B1D1. Then
the line C1D1 intersects the ray(BC at some pointU . The lines AB and
CD can’t intersect at a point that is on the same side ofA1C1 as B1. Oth-
erwise, any line throughC1 that intersects(BA and (BC, say atM and N,
would forceSC1B1N > SA1B1C1 andSA1BB1 > SA1B1C1. The lemma would imply
that SMA1C1 ≤ SA1B1C1. This is impossible since we can makeSMA1C1 arbitrar-
ily large. ThereforeC1D1 ∩ (BA = V . Applying the lemma to△VBU we get
SA1B1C1 ≥ SVA1C1 > SA1C1D1, a contradiction.
To show that the constantk = 1 is the best possible, consider the cases close to
the degenerate one in whichACD is a triangle,D1, C1 the midpoints ofAD and
CD, andB = A1 = B1 the midpoint ofAC.

22. We will prove that∠KID = β−γ
2 . Let AA′ be the diameter of the circumcirclek

of △ABC. Denote byM the intersection ofAI with k.
Since A′M ⊥ AM we have thatK,
M, and A′ are colinear. LetA1, B1,
and X be the feet of perpendiculars
from I to BC, CA, and AD. Then
△XIB1 ∼ △A′MB since the corre-
sponding angles are equal (this is
easy to verify). SinceMB = MI =
MC we concludeIM : KM = BM :
MA′ = IB1 : IX = XD : IX hence

A

B CD

A′
M

K

I

F

B1

A1

X

E

△KIM ∼ △IDX . Therefore∠KID = ∠XIM − (∠XID + ∠KIM) = ∠XIM −
90◦ = 180◦−∠AA′M−90◦ = ∠MAA′ = β−γ

2 .
Assume now thatIE = IF . Sinceβ > γ we have thatA1 belongs to the segment
FC and hence∠C = ∠DIA1 +∠EIB1 = ∠DIF +2∠FIA1. This is equivalent to
2∠FIA1 = γ − β−γ

2 thusβ < 3γ.

23. LetJ be the center of circlek tangent to the linesAB, DA, andBC. Denote bya
andb the incircles of△ADP and△BCP.
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First we will prove thatF ∈ IJ. A is
the center of homothethy that mapsa
to k; K is the center of negative ho-
mothethy that mapsa to ω ; and denote
by F̂ the center of negative homothethy
that mapsω to k. By the consequence
of the Desargue’s theorem we have that
A, K, andF̂ are colinear. Similarly we
prove thatF̂ ∈ BL thereforeF = F̂ and

I

K

L

P

D

A

C

B

E

F
J

ω

k

a b

F ∈ IJ. Now we will prove thatE ∈ IJ. Denote byX andY the centers of inver-
sions that mapa andb to ω . Comparing the lengths of the tangents fromA, B,
C, D to the circlesk anda we get thatAP+DC = AD+PC. Hence there exists a
circled inscribed inAPCD. Let X be the center of homothethy that mapsa to ω .
Using the same consequence of the Desargue’s theorem we see thatA, C, andX
are colinear. Consider the circlesa, ω andk again.A is the center of homothethy
that mapsa to k andX is the center of homothethy that mapsa to ω . Therefore
XA contains the center̂E of homothethy with positive coefficient that mapsω to
k. Similarly Ê ∈ BX , henceÊ = E andE ∈ IJ.

24. k4 + n2 must be even because 7k − 3n is even. If bothk and n are odd, then
k4+n2 ≡ 2 (mod 4) while 7k −3n ≡ 7−3≡ 0 (mod 4). Assume thatk = 2k′ and

n = 2n′. Then 7k −3n = 7k′−3n′

2 ·2(7k′ +3n′) and 2(7k′ +3n′) must be a divisor of

2(8k′4 +2n′2) hence 7k
′
+3n′ ≤ 8k′2 +2n′2. It is easy to prove by induction that

7k′ > 8k′4 for k′ ≥ 4 and 3n
′
> 2n′2 for n′ ≥ 1. Thereforek′ ∈ {1,2,3}.

For k′ = 1 we must have 7+ 3n′ |8+ 2n′2. An easy induction gives 7+ 3n′ >
8+2n′2 for n′ ≥ 3. Hencen′ ≤ 2. Forn′ = 1 we get(k,n) = (2,2) which doesn’t
satisfy the given conditions.n′ = 2 implies(k,n) = (2,4) which is a solution.
Assume now thatk′ = 2. Then|7k−3n|= |72−3n′ | ·(72+3n′)≥ 22·(49+3n′) >
44 +4n′2. This contradiction proves thatk′ 6= 2.
If we assume thatk′ = 3, then|7k −3n| = |73−3n′ | · (73 + 3n′) = |343−3n′ | ·
(73 +3n′) ≥ 100· (73+3n′) > 64 +4n′2. This is again a contradiction.
Thus(k,n) = (2,4) is the only solution.

25. Assume thatb = pα1
1 · · · pαl

l wherep1, . . . , pl are prime numbers. Sinceb− an
b2

is divisible byb2 we get thatpαi
i |an

b2 but pαi+1
i ∤ an

b2 for eachi. This implies that
n|αi for eachi henceb is a completenth power.

26. SetZ of integers will be calledgood if 47 ∤ a−b+c−d +e for anya,b,c,d,e ∈
Z. Notice that the setG = {−9,−7,−5,−3,−1,1,3,5,7,9} is good. For each
integerk ∈ {1,2, . . . ,46} the setGk = {x ∈ X |∃g ∈ G : kx ≡ g (mod 47)} is good
as well. Indeed, ifai ∈ Gk (1 ≤ i ≤ 5) are such that 47|a1− a2 + a3 − a4 + a5

then 47|ka1− ka2+ ka3− ka4+ ka5. There are elementsbi ∈ G for which kai ≡
bi (mod 47) which is impossible. Each element ofx is contained in exactly 10
of the setsGk hence 10|X |= ∑46

i=1 |Ak| therefore|Ak| > 2173> 2007 for at least
onek.
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27. The difference of the two binomial coefficients can be written as

D =

(
2k+1

2k

)

−
(

2k

2k−1

)

=
(2k+1)!

(2k)! · (2k)!
− 1

(2k)!
·
(

(2k)!
(2k−1)!

)2

=
22k

(2k)!
· (2k+1−1)!! − 22k−1·2

(2k)!
· ((2k −1)!!)2

=
22k · (2k −1)!!

(2k)!
·P(2k),

for P(x) = (x + 1)(x + 3) · · ·(x + 2k −1)− (x−1) · (x−3) · · · (x−2k + 1). The
exponenet of 2 in(2k)! is equal to 2k −1 hence the exponent of 2 inD is by 1
bigger then the exponent of 2 inP(2k). SinceP(−x) = −P(x) we getP(x) =

∑2k−1

i=1 cix2i−1. Being the coefficient nearx, c1 satisfies:

c1 = 2 · (2k −1)!! ·
2k−1

∑
i=1

1
2i−1

= (2k −1)!! ·
2k−1

∑
i=1

(
1

2i−1
+

1
2k −2i+1

)

= 2k ·
2k−1

∑
i=1

(2k −1)!!
(2i−1)(2k −2i+1)

.

Let ai be the solution ofai · (2i−1)≡ 1 (mod 2k). Then

2k−1

∑
i=1

(2k −1)!!
(2i−1)(2k −2i+1)

≡ −
2k−1

∑
i=1

(2k −1)!! ·a2
i

= −(2k −1)!!
2k−1

∑
i=1

(2i−1)2

= −(2k −1)!!
2k−1(2k +1)(2k −1)

3
≡ 2k−1 (mod 2k).

The exponent of 2 inc1 has to be 2k−1. Now P(2k) = c1 · 2k + 23kQ(2k) for
some polynomialQ. Clearly, 23k−1|P(2k) but 23k ∤ P(2k). Finally, the exponent
of 2 in D is equal to 3k.

28. Fix a prime numberp. Let d ∈ N be the smallest number for whichp| f (d) (it
exists becausef is surjective). By induction we havep| f (kd) for everyk ∈ N.
If p| f (x) but d ∤ x, from the minimality ofd we concludex = kd + r, wherer ∈
{1,2, . . . ,d−1}. Now we havep| f (kd)+ f (r) hencep| f (r) which is impossible.
Therefored|x ⇔ p| f (x).
If x ≡ y (modd), let D > x be some number such thatd|D. Thend|(y− x +
D) hencep| f (y− x + D), andp| f (y)+ f (D− x). Sincep| f (x + D− x) we get
p| f (x)+ f (D− x). We obtainedx ≡ y (modd) ⇒ f (x) ≡ f (y) (mod p).
Now assume thatf (x) ≡ f (y) (mod p). Taking the sameD as above and as-
suming thaty > x we get 0≡ f (x) + f (D − x) ≡ f (y) + f (D − x) ≡ f (y +
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D− x) ≡ f (y − x)+ f (D) ≡ f (y− x) (mod p). This implies thatd|y− x, thus
x ≡ y (modd) ⇔ f (x) ≡ f (y) (mod p).
Now we know that f (1), . . . , f (d) have different residues modulop hence
p ≥ d. Since f is surjective there are numbersx1, . . . ,xp such that f (x1) =
1, · · · , f (xp) = p. They all give different residues modulop hencex1, . . . ,xp must
give p distinct residues modulod implying p = d.
Now we havep|x ⇔ p| f (x) andx ≡ y (mod p)⇔ f (x)≡ f (y) (mod p) for every
x,y ∈ N and every prime numberp. Since no prime divides 1 we must have
f (1) = 1. We will prove by induction thatf (n) = n. Assume thatf (k) = k for
everyk < n. If f (n) > n then f (n)−n+1≥ 2 will have a prime factorp. This is
impossible becausef (n) ≡ n−1= f (n−1) (mod p), hencen ≡ n−1 (mod p).
If f (n) < n, let p be a prime factor ofn− f (n) + 1 ≥ 2. Now we haven ≡
f (n)− 1 (mod p) and f (n) ≡ f ( f (n)− 1) = f (n)− 1 (mod p), contradiction.
Thus f (n) = n is the only possible solution. It is easy to verify that thisf satisfies
the given conditions.

29. The statement will follow from the following lemma applied tox = k andy = 2n.
Lemma. Given two positive integersx andy, the number 4xy− 1 divides the

number(4x2−1)2 if and only if x = y.
Proof. If x = y it is obvious that 4xy−1|(4x2−1)2. Assume that there is a pair

(x,y) of two distinct positive integers such that 4xy− 1|(4x2− 1). Choose
such a pair for which 2x+y is minimal. From(4y2−1)2 ≡ (4y2−(4xy)2)2 ≡
16y2(4x2−1)2≡ 0 (mod 4xy−1) we get that(y,x) is such pair as well hence
2y + x > 2x + y andy > x.
Assume that(4x2−1)2 = k · (4xy−1). Multiplying 4xy−1≡−1 (mod 4x)
by k we get(4x2−1)2 ≡ −k (mod 4x) hencek = 4xl −1 for some positive
integerl. However, this means that 4xl −1|(4x2− 1)2 and sincey > x we
must havel < x implying 2l +y < 2x+y and this contradicts the minimality
of (x,y).

Remark: Using the same method one can prove the more general theorem:If
k > 1 is an integer, thenkab−1|(ka2−1)2 ⇔ a = b.

30. Denote byfi(n) the remainder whenνpi(n) is divided byd. Let f (n) = ( f1(n),
. . . , fk(n)). Consider the sequence of integersn j defined inductively asn1 = 1
andn j+1 = (p1 · · · pk)

n j . Let us first prove thatνp(r + l pm) = νp(r)+ νp(l pm)
for r < pm. This follows from(r + l pm)! = (l pm)! · (l pm + 1) · · ·(l pm + r) and
for eachi < pm the exponent ofp in l pm + i is equal to the exponent ofp in i.
If j1 < j2 < · · · < ju, the exponent ofpi in each ofn j2, . . . ,n ju is bigger thann j1
hencefi(n j1 +n j2 + · · ·+n ju)≡ fi(n j1)+ fi(n j2 + · · ·+n ju) (modd). Continuing
by induction we getfi(n j1 + · · ·+ n ju) ≡ fi(n j1)+ · · ·+ fi(n ju) (modd).
Since the range off has at most(d +1)k elements we see that there is an infinite
subsequence ofni on which f is constant. Then for anyd elementsnl1, . . . , nld of
this subsequence we havef (nl1 + · · ·+ nld) ≡ f (nl1)+ · · ·+ f (nld ) ≡ d f (nl1) ≡
(0,0, . . . ,0) (modd).
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation ofset theory, algebra, logic,
geometry (including vectors), analysis, number theory (including divisibility and
congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement
of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B−C: indicates the relation ofbetweenness, i.e., thatB is be-
tween A and C (this automatically means thatA,B,C are different collinear
points).

◦ A = l1∩ l2: indicates thatA is the intersection point of the linesl1 andl2.

◦ AB: line throughA andB, segmentAB, length of segmentAB (depending on
context).

◦ [AB: ray starting inA and containingB.

◦ (AB: ray starting inA and containingB, but without the pointA.

◦ (AB): open intervalAB, set of points betweenA andB.

◦ [AB]: closed intervalAB, segmentAB, (AB)∪{A,B}.

◦ (AB]: semiopen intervalAB, closed atB and open atA, (AB)∪{B}.
The same bracket notation is applied to real numbers, e.g.,[a,b) = {x | a ≤ x <
b}.

◦ ABC: plane determined by pointsA,B,C, triangleABC (△ABC) (depending on
context).

◦ [AB,C: half-plane consisting of lineAB and all points in the plane on the same
side ofAB asC.

◦ (AB,C: [AB,C without the lineAB.
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◦ 〈−→a ,
−→
b 〉, −→a ·−→b : scalar product of−→a and

−→
b .

◦ a,b,c,α,β ,γ: the respective sides and angles of triangleABC (unless otherwise
indicated).

◦ k(O,r): circlek with centerO and radiusr.

◦ d(A, p): distance from pointA to line p.

◦ SA1A2...An , [A1A2 . . .An]: area ofn-gonA1A2 . . .An (special case forn = 3, SABC:
area of△ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (re-
spectively).

◦ Zn: the ring of residues modulon, n ∈ N.

◦ Zp: the field of residues modulop, p being prime.

◦ Z[x], R[x]: the rings of polynomials inx with integer and real coefficients respec-
tively.

◦ R∗: the set of nonzero elements of a ringR.

◦ R[α], R(α), whereα is a root of a quadratic polynomial inR[x]: {a+bα | a,b ∈
R}.

◦ X0: X ∪{0} for X such that 0/∈ X .

◦ X+, X−, aX +b, aX +bY : {x | x ∈ X ,x > 0}, {x | x ∈ X ,x < 0}, {ax+b | x ∈ X},
{ax + by | x ∈ X ,y ∈Y} (respectively) forX ,Y ⊆ R, a,b ∈ R.

◦ [x], ⌊x⌋: the greatest integer smaller than or equal tox.

◦ ⌈x⌉: the smallest integer greater than or equal tox.

The following is notation simultaneously used in differentconcepts (depending on
context).

◦ |AB|, |x|, |S|: the distance between two pointsAB, the absolute value of the num-
berx, the number of elements of the setS (respectively).

◦ (x,y), (m,n), (a,b): (ordered) pairx andy, the greatest common divisor of inte-
gersm andn, the open interval between real numbersa andb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible.
However, one nonstandard abbreviation stood out as particularly convenient:

◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).
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◦ LHS: left-hand side (of a given equation).

◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric
mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.





B

Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BLR Belarus
BRA Brazil
BUL Bulgaria
CAN Canada
CHN China
COL Colombia
CRO Croatia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GBR United Kingdom
GDR Germany, DR
GEO Georgia
GER Germany
GRE Greece

HKG Hong Kong
HUN Hungary
ICE Iceland
INA Indonesia
IND India
IRE Ireland
IRN Iran
ISR Israel
ITA Italy
JAP Japan
KAZ Kazakhstan
KOR Korea, South
KUW Kuwait
LAT Latvia
LIT Lithuania
LUX Luxembourg
MCD Macedonia
MEX Mexico
MON Mongolia
MOR Morocco
NET Netherlands
NOR Norway
NZL New Zealand
PER Peru
PHI Philippines

POL Poland
POR Portugal
PRK Korea, North
PUR Puerto Rico
ROM Romania
RUS Russia
SAF South Africa
SER Serbia
SIN Singapore
SLO Slovenia
SMN Serbia and Montenegro
SPA Spain
SVK Slovakia
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
USA United States
USS Soviet Union
UZB Uzbekistan
VIE Vietnam
YUG Yugoslavia


