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Problems

1.1 The Forty-Eighth IMO
Hanoi, Vietham, July 19-31, 2007

1.1.1 Contest Problems

First Day (July 25)

1. Real numberas,ay,...,a, are given. For each(1 <i < n) define

d=maxa;|1<j<i}—min{a;|i<j<n}

and letd = max{d; | 1L <i < n}.
(a) Prove that, for any real numbes< x, < --- < Xy,

max{|xi—a||1§i§n}zg. (%)

(b) Show that there are real numbgys< x, < --- < X, such that equality holds

in (x).

. Consider five pointé&\,B,C,D andE such thatABCD is a parallelogram and

BCED is a cyclic quadrilateral. Let be a line passing through Suppose that
¢ intersects the interior of the segmdd€ at F and intersects lin&C at G.
Suppose also th&F = EG = EC. Prove that is the bisector of angIBAB.

. In a mathematical competition some competitors are dsefriendship is al-

ways mutual. Call a group of competitorslagueif each two of them are friends.
(In particular, any group of fewer than two competitors idigue.) The number
of members of a clique is called isze.

Given that, in this competition, the largest size of a cligueven, prove that the
competitors can be arranged in two rooms such that the lasgesof a clique

contained in one room is the same as the largest size of eaimputained in the
other room.
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Second Day (July 26)

4. In triangleABC the bisector of anglBCA intersects the circumcircle againfat
the perpendicular bisector BC atP, and the perpendicular bisectorAt at Q.
The midpoint ofBC is K and the midpoint oAC is L. Prove that the triangles
RPK andRQL have the same area.

5. Leta andb be positive integers. Show that iald— 1 divides(4a? — 1), then
a=h.

6. Letn be a positive integer. Consider
S={(xy,2[xy,z€ {0,1,...,n}, x+y+2z> 0}

as a set ofn+ 1)3— 1 points in three-dimensional space. Determine the sntalles
possible number of planes, the union of which cont@tsit does not include
(0,0,0).

1.1.2 Shortlisted Problems

1. Al (NZL) "MO1 Gjven a sequencay, ay, ... ,a, of real numbers, for eadh(1 <
i < n)define

d=maxa;:1<j<i}—min{a;:i<j<n}

and letd = max{d; : 1 <i <n}.
(a) Prove that for arbitrary real numbegis< xo < --- < Xp,

o

max{|xi—a|:1§i§n}2§. (1)

(b) Show that there exists a sequenge< Xp < --- < X of real numbers such
that we have equality in (1).

2. A2 (BUL) Consider those functionfs: N — N which satisfy the condition
f(m+n) > f(m)+ f(f(n)) -1, forallmneN.
Find all possible values df(2007).

3. A3 (EST) Letn be a positive integer, and Igtandy be positive real numbers
such thak" + y" = 1. Prove that

Dol4x) (& 14y 1
(kzll—i—x“k) <k;1+y4k> < (1-x)(1-y)

4. A4 (THA) Find all functionsf : R™ — R™ such that

f(x+f(y)) = f(x+y) + f(y)

for all x,y € R*.
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. A5 (CRO) Letc> 2, and leta(1),a(2),... be a sequence of nonnegative real

numbers such that
a(m+n) < 2a(m) + 2a(n) forallm,n> 1, and

1
Ky < —— >
a(2%) < KT 1)e forallk > 0.

Prove that the sequenagn) is bounded.

. A6 (POL) Letay,ay,...,a100 be nonnegative real numbers such it a3+

-+ +a2y0= 1. Prove that

2 2 2 12
a1a2+a2a3+ Rk o alOOal < 2—5

. A7 (NET)MO6 et n > 1 be an integer. Consider the following subset of the

space:
S={(xy,2)|x,y,2€ {0,1,...,n},x+y+2z> 0}.

Find the smallest number of planes that jointly contair{r¥- 1) — 1 points of
Shbut none of them passes through the origin.

. C1(SER) Letnbe an integer. Find all sequen@say, ..., a2, , satisfying the

following conditions:
() a€{0,1}forall1<i<n?+n;
(i) &41+ai2+ - +aiin<aiiniitaiiniz+: - +arnforall0<i<n®—n,

. C2 (JAP) A unit square is dissected into> 1 rectangles such that their sides

are parallel to the sides of the square. Any line, paralle side of the square
and intersecting its interior, also intersects the intesfcsome rectangle. Prove
that in this dissection, there exists a rectangle havingaiotn the boundary
of the square.

C3 (NET) Find all positve integers, for which the numbers in the s&=
{1,2,...,n} can be colored red and blue, with the following conditionnigei
satisfied: the se8x Sx Scontains exactly 2007 ordered triplesy, z) such that
(i) x,y,zare of the same color and

(i) x+y+ zis divisible byn.

C4 (IRN) LetAg=/{a,...,an} be afinite sequence of real numbers. For each
k > 0, from the sequend& = (x1,...,X,) We construct a new sequengg, 1 in

the following way:

(i) We choose a partitiofil,...,n} =1UJ, wherel andJ are two discjoint sets,

such that the expression
AR
i€ G

attains the smallest possible value. (We allow the betisJ to be empty;
in this case the corresponding sum is 0.) If there are seseddl partitions,
one is chosen arbitrarily.
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(i) We setAyi1=(Y1,...,¥n), Whereyi =xi+1ifi€l,andy; =x —1ifieJ.
Prove that for somk, the sequencay contains an elememtsuch thatx| > n/2.

C5 (ROM) In the Cartesian coordinate plane define the strip
Si={(xy):n<x<n+1}

for every integen. Assume that each stri, is colored either red or blue, and
let a andb be two distinct positive integers. Prove that there exigtscéangle
with side lengths andb such that its vertices have the same color.

C6 (RUSYMO3 |n a mathematical competition some competitors are friends
friendship is always mutual. Call a group of competitordigue if each two
of them are friends. The number of members in a clique is dtiesi ze.

It is known that the largest size of a clique is even. Prove titea competitors
can be arranged in two rooms such that the largest size ofjaecin one room
is the same as the largest size of a clique in the other room.

C7 (AUT) Leta < &T\@ be a positive real number. Prove that there exist posi-
tive integers andp such thap > a - 2" and for which one can selecpdairwise
distinct subsetsy, ..., S, Ti,..., Tp of the set{1,2,...,n} such thalSNT; # 0
forall 1<i,j<p.

C8 (UKR) Given a convexx-gonP in the plane, for every three vertices f
consider the triangle determined by them. Call such a tteegimpd if all its sides
are of unit length. Prove that there are not more thaf82ood triangles.

G1 (CZE) M4 |n a triangleABC the bisector of anglBCA intersects the cir-
cumcircle again aR, the perpendicular bisector BE atP, and the perpendicular
bisector ofAC at Q. The midpoint oBC is K and the midpoint oAC is L. Prove
that the triangle®RPK andRQL have the same area.

G2 (CAN) Given an isosceles trianghBC, assume thaB = AC. The midpoint
of the sideBC is denoted byM. Let X be a variable point on the shorter &nf&\
of the circumcircle of triangléABM. Let T be the point in the angle domain
BMA for which ZTMX = 90° andT X = BX. Prove thayMTB — ZCTM does
not depend oiX.

G3 (UKR) The diagonals of a trapezoRBCD intersect at poinP. PointQ lies
between the parallel lineBC and AD such that/AQD = ZCQB, and the line
CD separates the poinBsandQ. Prove thatBQP = ZDAQ.

G4 (LUX) 'MO2 Consider five point#, B,C, D andE such thatABCD is a paral-
lelogram anBCED is a cyclic quadrilateral. Let be a line passing through
Suppose that intersects the interior of the segmé@E atF and intersects line
BC atG. Suppose also th&F = EG = EC. Prove that is the bisector of angle
DAB.

G5 (GBR) Let ABC be a fixed triangle, and l&&;, B;, C; be the modpoints
of sidesBC, CA, AB respectively. LeP be a variable point on the circumcircle.
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Let linesPA;, PB;, PC; meet the circumcircle again af, B, C' respectively.
Assume that the pointg, B, C, A, B', C’ are distinct, and linedA’, BB', CC’
form a triangle. Prove that the area of this triangle doeslrpend orP.

G6 (USA) Let ABCD be a convex quadrilateral, and let poits By, C1, and
D1 lie on sidesAB, BC, CD, andDA respectively. Consider the areas of triangles
AA;D4, BB1A;1, CC.1B1, andDD;Cy; let Sbe the sum of the two smallest ones,
and letS; be the area of the quadrilater@lB;C;D;.

Find the smallest positive real numbesuch thakS, > Sholds for every convex
quadrilateraABCD.

G7 (IRN) Given an acute trianglaBC with anglesa, 3, andy at verticesA, B,
andC respectively such tha > y, let| be its incenter, an®& the circumradius.
PointD is the foot of the altitude from verteX. PointK lies on lineAD such
thatAK = 2R, andD separate#é andK. Finally linesDI andKI meet side#\C
andBC atE andF respectively. Prove that [E = IF thenf3 < 3y.

G8 (POL) A point P lies on the sidé\B of a convex quadrilater@BCD. Let w
be the incircle of the triangl€PD, and letl be its incenter. Suppose thatis
tangent to the incircles of trianglé$D andBPC at pointK andL, respectively.
Let the linesAC andBD meet atE, and let the line&\K andBL meet at~. Prove
that the point&, |, andF are colinear.

N1 (AUT) Find all pairs(k,n) of positive integers for which*7— 3" divides
K44 n?,

N2 (CAN) Letb,n > 1 be integers. Suppose that for e&ch 1 there exists an
integeray such thab — & is divisible byk. Prove thab = A" for some integer
A

N3 (NET) Let X be a set of 10000 integers, none of which is divisible by 47.

Prove that there exists a 2007-element sulgsaft X such thab—b+c—d+e
is not divisible by 47 for any,b,c,d,ec Y.

N4 (POL) For every integek > 2, prove that ¥ divides the number
2k+1 2k
() -(e)
but 21 does not.

N5 (IRN) Find all surjective functions : N — N such that for everyn,n € N
and every primep, the numberf (m+ n) is divisible by p if and only if f(m) +
f(n) is divisible byp.

N6 (GBR) 'MO5 etk be a positive integer. Prove that the numighi — 1)? has
a positive divisor of the formi8— 1 if and only ifk is even.

N7 (IND) For a primep and a positive integert, denote by,(n) the exponent
of p in the prime factorization ofi!. Given a positive integed and a finite set
{p1,..., Pk} of primes, show that there are infinitely many positive ieten
such thad|vy, (n) forall 1 <i <k.
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2 Solutions

2.1 Solutions to the Shortlisted Problems of IMO 2007

1. (a) Assume that = dn, for some indexn, and lek andl be the indeces such that

k<m<I suchthaty=a—a. Thendn=ax—a < (ax— %) + (X — &)
henceay — x« > d/2 orx, — & > d/2. The claim follows immediately.

(b) LetMi =max{a;: 1< j <i}andm =min{a;:i < j <n}. Setx, = %M'
Clearly, m < g < M; and both(m) and (M;) are non-decreasing. Fur-

thermore,—% = MM — x M, < x —&. Similarly x —a < %, hence
max{|x —a|:1<i<n}< max{%,l <i< n}. Thus, the equality holds

in (1) for the sequencex;}.

. Placingn =1 we getf (m+1) > f(m)+ f(f(1)) — 1 > f(m) hence the function

is non-decreasing. L&k be the smallest integer such thfghg) > 1. If f(n) =
n+ k for somek,n > 1 then placingnm =1 gives thatf(f(n)) = f(n+k) >
f(k)+ f(f(n)) — 1 which impliesf (k) = 1. We immediately get < ng. Choose
maximalkg such that there existse N for which f(n) = n+kg. Then we have
2n+ko> f(2n) > f(n)+ f(f(n))—1=n+ko+ f(n+ko) —1>n+ko+ f(n)—
1=2n+ (2kg—1) hence Ry — 1 < kg, or kg < 1. Thereforef(n) <n+1 and
f(2007) < 2008.

Now we will prove thatf (2007) can be any of the numbers2L...,2008. Define
the functions

1, n<2007—j, .

fi(n) = {n+ j —2007, otherwise ,] <2007 and
~n, 2007t n,

F008(n) = { n+1, 2007|n.

It is easy to verify thaffj satisfy the conditions of the problem fpe=1, 2,.. .,
2008.

. The inequality}j;—:i < ¥ holds for allt € (0,1) because it is equivalent to0t* —

t3—t+1=(1—1)(1—t3. Applyingittot = X and summing ovek=1,...,n
n 14xX n 1 _ X1 _ ¥y it i
we gety 1 7o < k-1 = et — g Writing the same relation for

y and multiplying by this one gives the desired inequality.

. Notice thatf (x) > x for all x. Indeed,f (x+ f(y)) # f(x+y) and if f(y) <y for

somey, settingx =y — f(y) yields to a contradiction.

Now we will prove thatf(x) — x is injective. If we assume that(x) —x =
f(y) —y for somex # y we would havex+ f(y) = y+ f(x) hencef(x+y) +
f(y) = f(x+y)+ f(x) implying f(x) = f(y), which is impossible. From the
functional equation we conclude thigtf (x) + f(y)) — (f(X) + f(y)) = f(x+V),
hencef (x) + f(y) = f(X) + f(y') whenevexk+y =X +Y'. In particular, we have
F(0)+ f(y) = 26 ().

Our nextgoal is to prove thdtis injective. If f (x) = f (x+h) for someh > 0 then
f(x)+ f(x+2h) = 2f (x+h) = 2f(x) hencef (x) = f(x+ 2h), and by induction
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f(x-+nh) = f(x). Therefore, O< f(x+ nh) — (x+nh) = f(x) — x—nhfor every
n, which is impossible.

We now havef (f(x)+ f(y)) = f(f(X)+y)+ f(y) = (f +y) and by symme-
try f(f(x)+ f(y)) = 2f (12 4+ x). Hence ™ +y = f(zy)+x thusf(x) —2x=c¢
for somec € R. The functional equation forces= 0. It is easy to verify that
f(x) = 2x satisfies the given relation.

. Defininga(0) to be 0 the relations in the problem remain to hold. It folldwys
induction that(ng +ny + - - - +ny) < 2a(ng) +22a(ny) + - - - + 2Xa(ny). We also
havea(n+np+---+nyi) <2a(Np+- - +Npi1) +2a(Ngi-1, g+ +Npi ) <+ <
2'(a(ny) +---+a(ny)). For integek € [2',271) we have

a(+---+n) =a(n+--+n+0+---40)
2i+1_K
< 2 a(ny) + - +a(ng + (21— K)a(0))
< 2k(a(ny) +---+a(ny)).

Assume now thall € N is given and leN = 3 1 b2' be its binary representa-
tion (K € N, bj € {0,1}). For each increasing sequenag)ncn of integers we

have
max{Tn,K} max{tn,K}
a(N) = a b2 | <Y 2"a b2
(N) (z_z |>_; (.Z '>

n 1=T,_1 1I=Th_1

max{ Tn,K} )

<y 2Atm-tat+l) Y a@)

n i=Tp_1
o1 2n+l( rn+11)2
Th—1+
< Tn—Tp-1+1 .
_;(n n-1 ) (Th—1+ 1)¢ Z (Tho1+1)c2

Choosingr, = 2"’n 1 we geta(N) < 220.22y 2n-1-a(c=2)(n-1) Thys, choos-
ing anya > ¢ 2 would give us the sequenag for which the last series is
bounded, WhICh proves the required statement.

. Using the Cauchy-Schwarz inequality we can bound thehiafid side in the fol-
lowing way: 1 [a1 (o + 28182) + ap(a2 + 280ag) + - - + A1.00(839 + 2a10081)] <

L@@+ +a2y) "% (S109 (a2 + 284418k 2)) " (the indeces are modulo 100),

It suffices to show
100

z (8% + 2ay18x12)° < 2
K=1

Each term of the last sum can be seerm@s 4a2, a7, , + 482(ay 1 A 2) <
(ag + 2akak+1 + 2akak+2) + 4ak+1ak+2 The required inequality now follows
from ¥, % (a¢ +2a¢ag, 1 +28¢ag ) < (8] + -+ +afpg)* = 1, 3”22&9% agag, ) <

(@ +ag+- - +afo) (B +ag+ - +afog) < 7 (8] + -+ +afpg) = 7.
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7. The union of the planes=1i,y=i, andz=i for 1 <i < ncontainsSand doesn’t
contain 0. Assume now that there exists a collecfiam+ biy+ciz+di=0:1<
i <N} of N < 3n planes with the described properties. Consider the polyaom
P(Xaya Z) = I_llN:l(aiX+ bly+ Giz+ dl)
Let & = 1, and choose the numb@Js, ..., &, such thaty! ;&i™ =0 form=
0,1,2,...,n—1 (here we assume that & 1). The choice of these numbers is
possible because the given linear systenidn...,d,) has the Vandermonde
determinant.
LetS= 343 0Yk-090jP(i, ], k). By the construction oP we know that
P(0,0,0) # 0 andP(i, j,k) = O for all other choices of, j,k € {0,1,...,n}.
ThereforeS = 6§P(O, 0,0). On the other hand expandirg as P(x,y,z) =

Y a+By<N Pap Y2 we get:
6O Pa.p.yi® JPKY

n
JZ)k 0 a+[3+y<N

i) ) ()

because for every choice of, 3,y at least one of them is less tharmaking
the corresponding sum in the last expression equal to 0.iFkigontradiction,
hence the required number of planesris 3

M=

S=

o[\/]:

8. LetS' = ac+ a1+ - +am. SinceS < 1, < - S“zﬂ and since each

of thesen+ 1 numbers belongs 0,1, .. n} we have thatﬁﬂ':;_%L =i. We im-
mediately gety =ap=--- =an =0 andaanrl =ap = - =ap.,=1. For
every 0< k < n, consider the sequente= (S17, jﬁﬂ‘rl, e IQZHH). The
sequence is strictly increasing, and its elements are frens¢t{0,1,2,...,n}.
Let m be the number that doesn’t appearljin andUy the total sum of the

elements ofl,. Sincea; + - +ap,, = P+ 1, +- +S“§H nntd)

S+ U+ 40 | = Ui+ n—kwe getm=n— k. Therefore

+(s+)n _ ) S if s<n—Kk,
+sntl T s+ 1, if s>n—k
Using this we get
+(s+1)n 1+(s+1)n
+snt1 $71+5n+1 T At (s+1)n — A—1+sn+1
—1+(s+1)n
+sn ( +ak+ st1)n — Stsn,

hence fors+k < nwe havegs" 12" — g€ 1HEMN _ g and fors4+k > n+ 1 we

havess &h )" = 56, 27" — 54 1. Henceay (s 10 = aki s if eithers+k < n

+sn
ors+k>n+1. If s+k=nthens, s " = swhile S, 1k+ (5+1)n=
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s+ 1. hencegy, (s11)n = 1 andak; s = 0. Now, by induction we can easily get
thatfor lI<u<nand 0<v<n:

0, ifu+v<n,

Butvn = { 1, ifu+v>n.

It is easy to verify that the above sequence satisfies théreshproperties.

. Assume the contrary. Consider the minimal such dissectithe squarédBCD

(i.e. the dissection with the smallest number of rectar)ghés two rectangles in
this minimal dissection can share an edge AMNP be the rectangle contianing
the vertexA, and letUBVW be the rectangle containirig) Assume thaMN <
BV. Let MXYZ be another rectangle containing the pdvh{this one could be
the same ablBVW). We can either hav®N > MZ or MZ > MN. In the first
case the rectangle containing the pdintvould have to touch the sideD (it
can’t touchBC becaus&VU > NM > MZ). The lineMN doesn'’t intersect any
of the interiors of the rectangles. Contradiction

If MZ > MN consider the rectangle containing the pdihtlt can’t touchAD
because it can't share the entire side vAi¥INP. Hence it has to toudBD and,
again,MN would be a line that doesn’t intersect any of the interioni€adic-
tion.

LetT = {(X,y,2) € Sx Sx S: x+y+ zis divisible byn}. For any pair(x,y) €
Sx Sthere exists uniquec S such tha(x,y,z) € T, hencgT|=n? LetM C T
be the set of those triples that have all elements of the satoe ©enote by
R andB the sets of red and blue numbers and assume that the nurobesd
numbers is not less thar2. Consider the following functiof : T\M — Rx B:
If (x,y,2) € T\M, thenF(x,y,z) is defined to be one of the paifs,y), (v,2),
(z,x) that belongs td&R x B (there exists exactly one such pair). For each element
(p,q) € Rx B there is uniques € Sfor which njp+qg+s. ThenF(p,q,s) =
F(s,p,q) =F(q,s,p) = (p,q). Hence T\ M| =3|Rx B| =3r(n—r) and|T| =
n>—3r(n—r)=n?-3rn+ 3r2

It remains to solve? — 3nr + 3r? = 2007 in the selN x N. First of all,n = 3k for
somek € N. Therefore 82 — 9kr + 3r2 = 2007 and we see thafr3Letr = 3s.
The equation becomédd — 3kr + 3r2 = 223. From our assumptian> n/2 we
get 223= k% — 3kr 4+ 3r2 = (k—r)(k — 2r) 4+ r? < r2, Furthermore 4223 =
(2k—3r)243r? > 3r? > 3.223. Hence € {15,16,17}. Forr = 15 andr = 16,
4.223—3r?is not a perfect square, and foe= 17 we get(2k — 3r)? = 25 hence
2k—3-17= +5. Bothk = 28 andk = 23 lead to solutiongn,r) = (84,51) and
(n,r) = (69,51).

Denote byay 1,8k 2, ..., a8k the elements ohy, and letQy = z{‘zlaﬁli. Assume
the contrary, thafia, ;| < n/2 for all k,i. This means that the number of elements
in Uken Ax is finite. Hence there are differeptg € N such thatA, = Aq. For
anyl C {1,2,...,n}, denoteS((l) = Jic a;. Let (I, J) be the partition that
was chosen in constructimg . ; from Ay.
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Qui1— Q= Z ((awi +1)* = (ai)?) + Z ((aj = 1% = (&j)?)
i€l Jek

= n+2(S() — S(3) = n—2minS(1) - )l

where the last minimum is taken over all partitigihg)) of the se{1,2,...,n}.
However, for eaclk, it is easy to inductively build a partitiofi’, J’) for which
IS(l") — ()] < n/2. Takelp andJy to be empty sets, and assume we made the
partitionl;, J of {1,...,1} in such a way thaiS.(I;) — Sj(l})| < n/2. Now, take

(honnde) = { (TOA1+23,0). if S < S(),
A (I, u{l+1}), if S() > S(3).

ThereforeQy;1 — Qx > n— 2% = 0 andQ is increasing. This contradicts the
previously established fact thap = Aq for somep # q.

Assume thah > b, a=ad, b= bsd, (a1,b1) = 1. There existp,q € Z such
that pa+ gb = d. We may assume that the paii$,, Sv+a) and (S, Sw.p) are
of different colors since otherwise the statement woultbfoimmediately. By
induction we get thatS,, Sy uatvb) are of the same color if and only if+v
is even. Fromab; = ba; we concludeSy,, = S,, which means thaa; andb,
must be of the same parity, hence they are both oddaand 3. Furthermore,
pa; + gby = 1 gives 2 p+ qwhich implies that the stripSy 4 = Si1patqo @and
S, are of different colors. Now, andS,, o4 have the same color.

Consider the rectangl®NPQ such y
that MQ = NP = a, MN = PQ =

b and the difference between the
coordinates ofM and Q (and con-
sequentlyN and P) is 2d. It suf-

fices to show that we can choose

a rectangle in such a way tha#l

andN are of the same color. Simple 0o
calculation shows that the difference of tkeoordinates oM andN is 7 =

v 2{4b ¢ Q. Let s be one of longest single-colored (say red) segments on the
x-axis. The translatios of sto the left byt has non-integer end-points, hence
it can’t be single-colored. Thus, there is a red poinson choose this point to
beN. Other points are now easily determined.

Remark. We used the fach; > 2 which is implied bya # b. The statement

doesn’t hold for squares (a counter-example is unit square)

Consider one of the cliques of maximal sizeaPd put its members in a roo

Call these student3-students. Put the others in the room Letd(X) andd(Y)

be the maximal sizes of cliquesiandyY in a given moment. If a student moves
from X two Y, thend(X) — d(Y) decreases by 1 or 2. Repeating this procedure
we can make this difference 0 erl.

Assume that it is-1 andd(X) =1, d(Y) = | + 1. If the roomY contains &a1-
student that doesn’t belong to someYatliques of the sizé + 1, after moving
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that student t&X we will manage to have(X) = d(Y). Therefore assume that all
2n—1 IM-students irY belong to allY-cliques of sizd + 1. Each such clique has
to contain ZI —n)+ 1> 1 non-I1-students. Take an arbitrary clique i¥f of size

I +1 and move a noi-student from it toX. Repeat this procedure as long as
there ard + 1 cliques inY. We claim thad(X) remaind after each such move.
If not, considerl + 1-clique inX. All its members would know all of 2— |
M-students inY. Together with them they would forrm2+ 1 clique which is
impossible. Hence we will end up with the configuration vatiX) = d(Y) =1.

Assume thady, ..., A are disjointm-element subsets dfL, ..., n}. Let
& ={SCH{1,...,n}:SNA #0foralli} and
T ={T C{1,...,n}: T DA for somei, butT NA; =0 for somej}.

For eachA € .7 andB € .7 we haveANB # 0. It suffices to prove:
Lemma. Fork=k(m) = [2m~log 3%@} andn = mk we have

lim 71 _ lim @—3_\/5
moo 2N mow 2N 2

Proof. For simplicity denotep = Iog“T\G. For everyi, each set in¥ must
contain one of ? — 1 non-empty subsets @%. Hence|.”| = (2™ — 1),
Using the substitution = 2™ we get

im ] g BT 2D
Mmoo 2KM " moe MK e ppr
pr _
= lim (1—}) :e*”:3 \/E.
r—o0 r 2

In order to calculat¢.7 |, notice that7 = % \ (% N.¥) whereZ = {T C
{1,...,n} : T D A for somei}. Obviously,|%¢| = (2™ — 1)X which gives
us|%| = 2™ — (2™ — 1)k, Furthermore|% N.7| = || — |\ %|. From
I\NU ={T C{1,...,n}:TNA £#0andT NA #£A forall i} we get|.”\
U | = (2™ — 2)K. Using the substitution = 2™ we get

im 20 i 2km _2(2m — 1)k 4 (2M — 2)k
Moo 20 mow 2mk
_o\pr pr
126 P+ iim T=2% 1 e p i im (1—3)
r—o0 rpl' r—oo r
3-v5

=1-2ePreP=gP=

2

For each verteX of P consider all good triangles whose one verteX isAll
the vertices of these triangles belong to the unit circlaerea al/. Label them
counter-clockwise a¢, . ..,V;. Denote byf (V) andl (V) the first and the last of
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16.

17.

18.

19.

20.

21.

2 Solutions

these verticesf(V) = V1, (V) = V,). Denote byT; (V) the good triangle with
verticesV and f(V). Tj(V) is defined analogously. We calk (V) and T;(V)
the trianglesassociated with V (they might be the same). Let be the total
number of associated triangles, anthe total number of good triangles. It is
enough to prove that each good triangle is associated widtast three vertices.
Indeed this would imply 8< a < 2n. It suffices to show that for an arbitrary
good triangleABC oriented counter-clockwise we hawe=1(B) or A= f(C).
Assume thaf # | (B) andA # f(C). Thenl(B) and f (C) would belong to the
half plane[BC, A. DefineA’ = I(B) if ZABI(B) < 60°. If this angle is bigger than
60° defineA’ to be the third vertex of;(B). Similarly we defineA”. We have
Z/ABA’ < 60°, ZACA” < 60°, henceA belongs to the interior of the rectangle
A'BCA” andP can't be convex. This concludes the proof of our claim.
Remark. It is easy to refine the proof to show that [%(n— 1)]. This result
is sharp and the example ok 3 1-gon with X good triangles is not hard to
construct: rotate a rhombusBCD (AB = BC = DA = 1) aroundA by small
anglesk times.

LetO be the circumcenter of the trianghBBC. We know that/CPK = ZCQL

_ RPPK g PK _ PC q; ;
hence% = Roor- SinceAPKC ~ AQLC we havea = SinceROC is
isosceles and’OPR = Z0QC we get AROQ = ACOP and RQ = PC. This
finally implies% =1.

LetY be the midpoint oBT. ThenMY||CT andTY L XY henceT, Y, M, X be-
longto acircle. Thug MTB— ZCTM = ZMXY — ZYMT = ZMXY — LTXY =
ZMXY — LYXB = ZMXB = ZBAM.

Let X be the point on the lin€Q such thatXC||AQ. ThenXC : AQ = CP::
PA = BC : AD which implies ABCX ~ ADAQ. HenceZ/DAQ = /BCX and
/BXC = /DQA = /BQC. ThereforeB, C, Q, X belong to a circle which implies
thatZ/BCX = ZBQX = ZBQP.

LetK andL be the midpoints oFC andCG respectively. TheiK L CD and
EL 1 BC henceKL is the Simson’s line of the triangBCD and intersectBD at
pointM such thaEM _L BD. We also have th&fL||| andKL bisects the sidEA
of AACG. HenceKL passes through the intersection of the diagonalsBsiD
thuskL bisectsBD. ThereforeDM = MB andDEB is isosceles. From\DEB ~
AKEL we getthaEK = EL henceCF = CG. Thus/DAF = /FGC= ZGFC =
/FAB.

Denote byAq, By, andCy the given intersection points. Applying the Pascal’s
theorem to the pointdPCC'BA’ gives us thaBy € C;A;. Similarly we getCy €
AB1 and Ag € B1Cy. From BoAy [|AB; we get 250 = 8L, SinceBA||B1A
we get% = %. Hence% = % or CoBg - CoAg = CoA - CoB. Therefore
SAOBOCO = SABCO- HOWGVGI’,SABCO = SABBl (because‘\lBlﬂAB) henceS%Boco =
Shes, = 3Shec.

Let us prove tha®, > S, i.e. thatk < 1.
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Lemma. If X', Y/, Z’ are the points on the sid&&Z, ZX, XY of AXYZ then
Sxryrze > MiN{Sxyrz, Syzrxrs Sexry }-

Proof. Denote byX;, Y1, Z; the midpoints ofYZ, ZX, XY. If two of X', Y/,
Z' belong to one of the triangleXYi1Z;, YZ1 X1, ZX1Y1, then the state-
ment follows immediately. Indeed, ¥, Z’' € XY;Z;, thenY’Z’ intersects
the altitude fromX to YZ at the pointQ inside AXY;Z;, which forces
d(X,Z'Y") <d(X,z3\1) = %d(X,YZ) < d(X',Y'Z"). Assume now, w.l.0.g.
thatX' € X1Z, Y e Y1X, Z' € Z;Y. Thend(Z',XY") > d(Z1,X"Y’), hence
Skiyizr > Sxryizy. Similarly Sgryiz, > Sxry,z, . Since Sy, z, = Sqy,z, We
haveScyiz > Sxvizy = Sxvz, henceSeyrz > Min{Syrzr, Syzixr, Sexry }-

If SazBic; > MIN{Sa;BB,, SBycc, } @ndSaycp; > MIN{Se,pp;» Spyan, | then the

problem is trivial. The same holds f&,s,p, andSg,c;p; -

Without loss of generality assume th&kg,c, < Min{Syes,, Ss,cc,} and

SaBD; < MIN{Sape,, Saap, }- ASssume also thaap,c, < Sag,p,- Then

the line C,D; intersects the rayBC at some pointU. The linesAB and

CD can't intersect at a point that is on the same sideAgE; as B;. Oth-

erwise, any line througl€; that intersect§BA and (BC, say atM and N,

would forceSg;g;n > Sa;p,c; @and Saee, > Sag,c;- The lemma would imply

that Sua,c; < Saze,c,- This is impossible since we can ma&ga,c, arbitrar-
ily large. ThereforeC;D1 N (BA = V. Applying the lemma toAVBU we get

SaBic; > Svagc; > Sagcyp; - @ contradiction.

To show that the constakt= 1 is the best possible, consider the cases close to

the degenerate one in whi&tD is a triangle D1, C; the midpoints ofAD and
CD, andB = A; = B; the midpoint ofAC.

We will prove that’KID = %’ Let AA’ be the diameter of the circumcirdie
of AABC. Denote byM the intersection oAl with k.

Since AM 1L AM we have thatK,
M, and A’ are colinear. LetA;, By,
and X be the feet of perpendiculars
from | to BC, CA, and AD. Then
AXIB; ~ AAMB since the corre-
sponding angles are equal (this is
easy to verify). SinceMB = M| =
MC we concludelM : KM = BM :
MA" = IB; : IX = XD : IX hence
AKIM ~ AIDX. ThereforeZKID = ZXIM — (ZXID + ZKIM) = ZXIM —
90° =180 — ZAA'M — 90° = /MAA' = B—EV

Assume now thatE = IF. Since3 > y we have tha#; belongs to the segment
FC and hence’C = ZDIA; + ZEIBy = ZDIF + 2/FI1A;. This is equivalent to
2/FIA; = y—EY thusp < 3y.

LetJ be the center of circlg tangent to the linedB, DA, andBC. Denote bya
andb the incircles of AADP and ABCP.
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24,

25.

26.

2 Solutions

First we will prove thatF € 1J. Ais
the center of homothethy that maas
to k; K is the center of negative ho-
mothethy that mapato w; and denote
by F the center of negative homothethy
that mapsw to k. By the consequence
of the Desargue’s theorem we have that
A K, andF are colinear. Similarly we
prove thaf € BL thereforeF = F and

F € 1J. Now we will prove thatE € |J. Denote byX andY the centers of inver-
sions that map@ andb to w. Comparing the lengths of the tangents frénB,
C, D to the circlek anda we get thatAP + DC = AD + PC. Hence there exists a
circled inscribed inAPCD. Let X be the center of homothethy that map® w.
Using the same consequence of the Desargue’s theorem weasée@, andX
are colinear. Consider the circlasw andk again A is the center of homothethy
that mapsa to k andX is the center of homothethy that mag#o w. Therefore
XA contains the centdt of homothethy with positive coefficient that mapgo

k. Similarly E € BX, henceE = E andE € 1J.

k* + n? must be even becausé 7 3" is even. If bothk andn are odd, then
k*+n? =2 (mod 4) while 7*—3"=7—-3=0(mod 4). Assume thak = 2k’ and
n=2n.Then ¥—3"= L23n' .2(7% +3") and 27¢ +3") must be a divisor of
2(8K“*+2n2) hence ¥ + 3" < 8k2+2n2. It is easy to prove by induction that
7% > 8k4fork' >4 and 3 > 2n2for i’ > 1. Thereforel € {1,2,3}.

For k' = 1 we must have 7 3"|8+ 2n2. An easy induction gives 7 3" >
8+ 2n? for ' > 3. Henca < 2. Forn’ = 1 we get(k,n) = (2,2) which doesn’t
satisfy the given conditions! = 2 implies(k,n) = (2,4) which is a solution.
Assume now that' = 2. Then|7K—3"| = [72 - 3"|. (724-3") > 22.(49+3") >
4% + 4. This contradiction proves that # 2.

If we assume thak/ = 3, then|7k —3"| = |73 —3"|. (73 +3") = [343—3"|.
(73+3") > 100 (73 +3") > 6*+ 4n’2. This is again a contradiction.
Thus(k,n) = (2,4) is the only solution.

Assume thab = py*--- p{" wherep,...,p are prime numbers. Sinde- a,
is divisible byb? we get thatp" [af}, but plithy af), for eachi. This implies that

n|a; for eachi henceb is a completeith power.

SetZ of integers will be calledjood if 47 t a— b+ c—d+efor anya,b,c,d,ec
Z. Notice that the se6 = {-9,—7,—-5,-3,—1,1,3,5,7,9} is good. For each
integerk € {1,2,...,46} the seiGy = {x € X|3ge G : kx=g (mod 47} is good
as well. Indeed, ifg; € G (1 <i<5) are suchthat4@ —a,+as—as+as
then 47ka; — kap + kaz — kag + kas. There are elements € G for whichka; =
bi (mod 47 which is impossible. Each element fs contained in exactly 10
of the setsGy hence 10X| = T, |Ay| thereforglA| > 2173> 2007 for at least
onek.
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27. The difference of the two binomial coefficients can beten as

. (2;1) - (kal) - (z(k?|k+2:<)| - (21)! ' ((éfk)l!)! )2

2K 2k-1.2
= % L2y — 2(2—k)| S((2K=1)m)?
2ok _

for P(x) = (X+1)(x+3)--- (x+2€—1) = (x—1) - (x—3)--- (x— 2+ 1). The
exponenet of 2 ir2¥)! is equal to 2 — 1 hence the exponent of 2 Dis by 1
bigger then the exponent of 2 P(2X). SinceP(—x) = —P(x) we getP(x) =
52 X2 1. Being the coefficient neag ¢; satisfies:

2k71 1 2k71 1 1
=2.(2X—1n. Y —— = (2= . :
a=2&-1-5 g7~ -1 iZl(2|—1+2k—2|+1>

20t k1)

— ok,
=2 i; (2i—1)(2k—2i+1)
Let a; be the solution o&; - (2i — 1) = 1 (mod ). Then

Zkfl (Zk _ 1)” Zkfl

i; (2i—1)(2x—2i+1) =- i;(2"—1)!! .a?

k-1

= —(2*- 1! _Z(Zi —1)?

g 22 +31)(2k— 1)

= —(2*-1)
= 2 (mod Z).

The exponent of 2 irc; has to be R— 1. Now P(2K) = ¢; - 2K+ 2%Q(2¥) for
some polynomiaQ. Clearly, Z<-1|P(2K) but 22t P(2X). Finally, the exponent
of 2in D is equal to &.

28. Fix a prime numbep. Letd € N be the smallest number for whighi f (d) (it
exists becausé is surjective). By induction we hawve! f (kd) for everyk € N.
If p|f(x) butd{x, from the minimality ofd we concludex = kd +r, wherer €
{1,2,...,d—1}. Now we havep|f (kd)+ f(r) hencep|f (r) which is impossible.
Therefored|x < p|f(X).
If x=y (modd), let D > x be some number such thafD. Thend|(y — x+
D) hencep|f(y—x+ D), andp|f(y) + f(D —x). Sincep|f(x+ D — x) we get
p|f(x)+ f(D —x). We obtaineck =y (modd) = f(x) = f(y) (modp).
Now assume thaf(x) = f(y) (modp). Taking the sam® as above and as-
suming thaty > x we get 0= f(x)+ f(D—x) = f(y)+ f(D—x) = f(y+
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29.

30.

2 Solutions

D—-x)=f(y—x)+ f(D) = f(y—x) (modp). This implies thatd|y — x, thus
x=y(modd) < f(x) = f(y) (modp).

Now we know thatf(1),...,f(d) have different residues modulp hence
p > d. Since f is surjective there are numbexs,...,Xp such thatf(x;) =
1,---,f(xp) = p. They all give different residues modutdencexy, . .., Xp must
give p distinct residues moduld implying p = d.

Now we havep|x < p|f(x) andx=y (modp) < f(x) = f(y) (mod p) for every
x,y € N and every prime numbep. Since no prime divides 1 we must have
f(1) = 1. We will prove by induction thaf (n) = n. Assume thatff (k) = k for
everyk < n. If f(n) > nthenf(n)—n+1> 2 will have a prime factop. This is
impossible becausgn) =n—1= f(n—1) (modp), hencen=n—1(modp).
If f(n) <n, let p be a prime factor oh— f(n)+1 > 2. Now we haven =
f(n)—1 (modp) and f(n) = f(f(n) — 1) = f(n) — 1 (mod p), contradiction.
Thusf(n) = nis the only possible solution. It is easy to verify that thisatisfies
the given conditions.

The statement will follow from the following lemma apgaditox = k andy = 2n.

Lemma. Given two positive integerg andy, the number #y — 1 divides the
number(4x? — 1) if and only ifx =y.

Proof. If x=y it is obvious that &y — 1|(4x?> — 1)2. Assume that there is a pair
(x,y) of two distinct positive integers such thaty4- 1|(4x?> — 1). Choose
such a pair for which 2+ yis minimal. From(4y? — 1)? = (4y? — (4xy)?)? =
16y?(4x?> —1)° =0 (mod 4y — 1) we get thaty, x) is such pair as well hence
2y+ x> 2x+yandy > x.

Assume that4x? — 1)2 = k- (4xy — 1). Multiplying 4xy — 1= —1 (mod 4)
by k we get(4x? — 1)2 = —k (mod 4X) hencek = 4x| — 1 for some positive
integerl. However, this means thaxi4— 1|(4x?> — 1)2 and sincey > x we
must have < ximplying 2 +y < 2x+y and this contradicts the minimality
of (x,y).
Remark: Using the same method one can prove the more general thetfrem:
k > 1is an integer, thekab — 1|(ka? — 1) < a=Db.

Denote byfi(n) the remainder wheny, (n) is divided byd. Let f(n) = (f1(n),
..., fk(n)). Consider the sequence of integaysdefined inductively asy; =1
andnjyq = (p1---pk)". Let us first prove thavp(r +1p™) = vp(r) + vp(lp™)
for r < p™. This follows from(r +1p™! = (Ip™!- (Ip™+1)---(Ip™+r) and
for eachi < p™the exponentop in |p™+i is equal to the exponent g@fin i.

If j1 <j2<--- < ju, the exponent of; in each ofnj,,...,n;, is bigger tham;,
hencefi(nj, +nj, +---+nj,) = fi(nj,) + fi(nj, +---+nj,) (modd). Continuing
by induction we gefi(nj, +---+nj,) = fi(nj;) +---+ fi(nj,) (modd).

Since the range of has at mostd + 1) elements we see that there is an infinite
subsequence of on whichf is constant. Then for aryelementsy,, ..., n, of
this subsequence we havgn, +---+ny,) = f(n,) +---+ f(n,) =df(n,) =
(0,0,...,0) (modd).
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notaticsedtheory, algebra, logic,
geometry (including vectors), analysis, number theorgl(ding divisibility and
congruences), and combinatorics. We use this notatiorglilye

We assume familiarity with the basic elements of the gamédets (the movement
of pieces and the coloring of the board).

The following is notation that deserves additional clasfion.

o A(A,B,C), A—B—C: indicates the relation dfetweenness, i.e., thatB is be-
tween A and C (this automatically means th#, B,C are different collinear
points).

o A=I1Nl,: indicates thaf is the intersection point of the linésandl,.

o AB: line throughA and B, segmentAB, length of segmenfB (depending on
context).

o [AB: ray starting inA and containindg.
(AB: ray starting inA and containindg, but without the poinA.
(

o [AB]: closed intervaAB, segmenfB, (AB) U{A,B}.

o (AB]: semiopen intervahB, closed aB and open af, (AB) U {B}.
The same bracket notation is applied to real numbers,[a,8),= {x|a<x<

b}.
o ABC: plane determined by poings B, C, triangle ABC (AABC) (depending on
context).

AB): open intervalAB, set of points betweef andB.

o [AB,C: half-plane consisting of linéB and all paoints in the plane on the same
side of AB asC.

o (AB,C: [AB,C without the lineAB.
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D —
o (@, b),a- b:scalar product ol and b .

o a,b,c a,p,y: the respective sides and angles of triarBE (unless otherwise
indicated).

o k(O,r): circlek with centerO and radius.
o d(A, p): distance from poinA to line p.

© SaAy A [A1A2. . Ay area ofn-gonAiA; ... Ay (Special case fon = 3, Sagc:
area ofAABC).

o N, Z, Q, R, C: the sets of natural, integer, rational, real, complex nerslfre-
spectively).

o Zn: the ring of residues modulg n € N.
o Zp: the field of residues modulp, p being prime.

o Z[x], R[x]: the rings of polynomials i with integer and real coefficients respec-
tively.

o R*:the set of nonzero elements of a riRg

o Rla], R(a), wherea is a root of a quadratic polynomial R[x|: {a+ba |a,be
R}.

o Xo: XU {0} for X such that G# X.

o Xt, X7, aX+b,aX+bY: {x|xe X,x> 0}, {x]| xe X,x< 0}, {ax+b|xe X},
{ax+by|xe X,y € Y} (respectively) foiX,Y CR, a,b e R.

o [X], [X]: the greatest integer smaller than or equal.to
o [x]: the smallest integer greater than or equal.to

The following is notation simultaneously used in differeohcepts (depending on
context).

o |AB|, ||, |S: the distance between two poiB, the absolute value of the num-
berx, the number of elements of the skfrespectively).

o (xy), (mn), (a,b): (ordered) paix andy, the greatest common divisor of inte-
gersmandn, the open interval between real numbaendb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviatas much as possible.
However, one nonstandard abbreviation stood out as pkntigwonvenient:

o w.l.o.g.: without loss of generality.
Other abbreviations include:

o RHS: right-hand side (of a given equation).
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LHS: left-hand side (of a given equation).

QM, AM, GM, HM: the quadratic mean, the arithmetic mean, te®metric
mean, the harmonic mean (respectively).

gcd, Icm: greatest common divisor, least common multipgsgectively).
i.e.:in other words.

e.g.: for example.
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Codes of the Countries of Origin

ARG
ARM
AUS
AUT
BEL
BLR
BRA
BUL
CAN
CHN
COL
CRO
CuB
CYP
CZE
Czs
EST
FIN
FRA
FRG
GBR
GDR
GEO
GER
GRE

Argentina
Armenia
Australia
Austria
Belgium
Belarus
Brazil
Bulgaria
Canada
China
Colombia
Croatia
Cuba
Cyprus

Czech Republic
Czechoslovakia

Estonia
Finland
France
Germany, FR

United Kingdom

Germany, DR
Georgia
Germany
Greece

HKG
HUN
ICE
INA
IND
IRE
IRN
ISR
ITA
JAP
KAZ
KOR
KUw
LAT
LIT
LUX
MCD
MEX
MON
MOR
NET
NOR
NZL
PER
PHI

Hong Kong
Hungary
Iceland
Indonesia
India

Ireland

Iran

Israel

Italy

Japan
Kazakhstan
Korea, South
Kuwait
Latvia
Lithuania
Luxembourg
Macedonia
Mexico
Mongolia
Morocco
Netherlands
Norway
New Zealand
Peru
Philippines

POL
POR
PRK
PUR
ROM
RUS
SAF
SER
SIN
SLO
SMN
SPA
SVK
SWE
THA
TUN
TUR
TWN
UKR
USA
USS
UzB
VIE
YUG

Poland
Portugal
Korea, North
Puerto Rico
Romania
Russia
South Africa
Serbia
Singapore
Slovenia
Serbia and Montenegro
Spain
Slovakia
Sweden
Thailand
Tunisia
Turkey
Taiwan
Ukraine
United States
Soviet Union
Uzbekistan
Vietnam
Yugoslavia



