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1

Problems

1.1 The Forty-Nineth IMO
Madrid, Spain, July 10-22, 2008

1.1.1 Contest Problems

First Day (July 16)

. An acute-angled trianglBC has orthocentds. The circle passing through

with center the midpoint oBC intersects the lin@C at A; andA,. Similarly,
the circle passing througH with center the midpoint ofA intersects the line
CA atB; andB;, and the circle passing througthwith center the midpoint of
AB intersects the lindB atC; andC,. Show thatA{, A», By, B, C1,Co lieon a
circle.

. (a) Prove that

X2 . \2 . 2 -
(x=12 (y-1? (z-1)2~
for all real numbers, y, z, each different from 1, and satisfyingz = 1.
(b) Prove that equality holds above for infinitely many teiplof rational num-

bersx, y, z, each different from 1, satisfyingz = 1.

. Prove that there exist infinitely many positive integemich than? + 1 has a
prime divisor which is greater tham2- v/2n.
Second Day (July 17)

. Find all functionsf : (0, +) — (0,+) (so, f is a function from the positive

real numbers to the positive real numbers) such that

(FW)2+(f(0)°  wWP+x2
fy)+1(2)  y?+2

for all positive real numbenw, x, y, z, satisfyingwx = yz.
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5. Letn andk be positive integers witk > n andk — n an even number. Letr?2
lamps labelled 1, 2,.., 2n be given, each of which can be eithar or off.
Initially all the lamps are off. We consider sequenceateps: at each step one of
the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consistidgstéps and resulting in the
state where lamps 1 througtare all on, and lamps+ 1 through 2 are all off.
Let M be the number of such sequences consistirgstéps and resulting in the
state where lamps 1 througtare all on, and lamps+ 1 through 2 are all off,
but where none of the lampst+ 1 through 21 is ever switched on.

Determine the ratitN /M.

6. Let ABCD be a convex quadrilateral witlBA| # |BC|. Denote the incircles of
trianglesABC and ADC by wy; and w;, respectively. Suppose that there exists a
circle w tangent to the raBA beyondA and to the rayBC beyondC, which is
also tangent to the linesD andCD. Prove that the common external tangents of
wy andwy, intersect orw.

1.1.2 Shortlisted Problems

1. Al (KOR) MO4 Find all functionsf : (0,+) — (0,4) (so, f is a function
from the positive real numbers to the positive real numbsrsh that

(FW)2+(f(0)°  wWP+x2
fy )+  y?+2

for all positive real numbenw, X, y, z, satisfyingwx = yz.

2. A2 (AUT) 'Mo2
(a) Prove that
X2 y? 2

R AN VA A e

for all real numbers, y, z, each different from 1, and satisfyingz = 1.

(b) Prove that equality holds above for infinitely many teiplof rational num-
bersx, y, z, each different from 1, satisfyingz = 1.

3. A3 (NET) Let SC R be a set of real number. We say that a pdirg) of
functions fromS to Sis a Spanish Couple on S, if they satisfy the following
conditions:

(i) Both functions are strictly increasing, i.€(x) < f(y) andg(x) < g(y) for
allx,y € Swithx<y;

(i) The inequalityf(g(g(x))) < g(f(x)) holds for allx € S.

Decide whether there exists a Spanish Couple

(a) onthe se= N of positive integers;

(b) onthe se6={a—1/b:a,be N}.
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. A4 (AUT) For an integem, denote byt(m) the unique number if1,2, 3}

such tham+t(m) is a multiple of 3. A functionf : Z — Z satisfiesf (—1) =0,
f(0)=1,f(1)=-1and

f(2"+m)=f(2"—t(m))— f(m) for all integersm,n > 0 with 2" > m.

Prove thatf (3p) > 0 holds for all integerg > 0.

. A5 (SVK) Leta, b, c, d be positive real numbers such that

a b ¢ d
abcd=1 and a+b+c+d>—-+—-+-+-.
b ¢ d a
Prove that
b ¢ d a
atb+c+d< —+-+—-+-.
a b c¢c d

. A6 (LIT) Letf:R — N be a functions which satisfies

f (x+ le)) =f <y+ Tlx)) , forallxyeR.

Prove that there is a positive integer which is not a valué. of

. A7 (GER) Prove that for any four positive real number®, c, d the inequality

(a-b)(a-c) (b—c)b-d)  (c—d)c-a) (d-a)(d—b)
at+b+c b+c+d c+d+a d+a+b —

holds. Determine all cases of equality.

. C1 (NET) A box is a rectangle in the plane whose sides are parallel to the

coordinate axes and have positive lengths. Two bamtessect if they have a
common point in their interior or on their boundary.

Find the largesh for which there exish boxesBy, ..., By such thai3; andB;
intersect if and only if £ j +1 (modn).

. C2 (SER) For every positive integan determine the number of permutations

(a1,...,an) of the set{1,2,..., n} with the following property:
2(ag+ap+---+a) isdivisible bykfork=1,2,... n.

C3 (PER) Consider the seb of all points with integer coordinates in the coor-
dinate plane. For a positive intedertwo distinct pointsA, B € Swill be called
k-friendsiif there is a poinC € Ssuch that the area of the triangh8C is equal
tok. A setT C Swill be called ak-clique if every two points inT arek-friends.
Find the least positive integ&rfor which there exists &-clique with more than
200 elements.

C4 (FRA) 'MO5 | et n andk be positive integers witk > n andk — n an even
number. Let 2 lamps labelled 1, 2,.., 2n be given, each of which can be either
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on or off. Initially all the lamps are off. We consider sequenceteps: at each
step one of the lamps is switched (from on to off or from off iY.o

Let N be the number of such sequences consistirgstéps and resulting in the
state where lamps 1 througtare all on, and lamps+ 1 through 2 are all off.
Let M be the number of such sequences consistingstéps and resulting in the
state where lamps 1 througteare all on, and lamps+ 1 through 2 are all off,
but where none of the lampst 1 through 21 is ever switched on.

Determine the ratitN /M.

C5 (RUS) Let S= {x1,X2,...,X1} be ak+I-element set of real numbers
contained in the intervadD, 1]; k andl are positive integers. A-element subset
A C Sis calledniceif

1 k41
T 2 X[ 2; :
X €A Xj€S\A

Prove that the number of nice subsets is at lgést (kz').

C6 (NET) Forn>2,letS;, S, ..., Sn be 2'subsets oA = {1,2,3,...,2"*1}
that satisfy the following property: There do not exist indsa andb with a < b
and elementgy,z€ Awith X <y < zsuch thal,z € S; andx,z€ S,. Prove that
at least one of the se8, S, ..., Sn contains no more tham&lements.

G1 (RUS) '™MOL An acute-angled triangl&BC has orthocenteH. The circle
passing throughd with center the midpoint oBC intersects the lin®C at Ay

andA,. Similarly, the circle passing througdt with center the midpoint o£A

intersects the lin€A atB; andB,, and the circle passing throughwith center
the midpoint ofAB intersects the linAB atC; andC,. Show thatd;, Ay, By, By,

C1, G, lie on acircle.

G2 (LUX) Given a trapeziodBCD with parallel sideAB andCD, assume that
there exist pointk on lineBC outside the segmeBC, andF inside the segment
AD, such that/DAE = ZCBF. Denote byl the intersection point o€D and
EF, and byJ the intersection point oAB andEF. LetK be the midpoint of the
segmenEF. AssumeK does not line on the line&B andCD.

Prove that belongs to the circumcircle af ABK if and only if K belongs to the
circumcircle of ACDJ.

G3 (PER) Let ABCD be a convex quadrilateral and IBtandQ be the points

such thaPQDA andQPBC are cyclic quadrilaterals. Suppose that there exists a

pointE on the line segmemRQ such that/ PAE = ZQDE and/PBE = ZQCE.
Show that the quadrilaterABCD is cyclic.

G4 (IRN) LetBE andCF be the altitudes in an acute triandiBC. Two circles
passing through the poingsandF are tangent to the linBC at the point$> and
Q so thatB lies betweerC andQ. Prove that the linePE andQF intersect on
the circumcircle ofAAEF.
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G5 (NET) Letkandnbe integers with & k < n—2. Consider a sdt of nlines
in the plane such that no two of them are parallel and no thage h common
point. Denote by the set of intersection points of lineslinLet O be a point in
the plane not lying on any line df.

A point X €1 is colored in red if the open line segmé&X) intersects at most
k lines fromL. Prove that contains at leas}(k+ 1)(k+ 2) red points.

G6 (SER) Let ABCD be a convex quadrilateral. Prove that there exists a point
P inside the quadrilateral such that

/PAB+ /PDC = /PBC+ /PAD = /PCD + /PBA = /PDA+ /PCB = 90"

if and only if the diagonal&C andBD are perpendicular.

G7 (RUS)™O6 | et ABCD be a convex quadrilateral witfBA| # |BC|. Denote
the incircles of trianglesBC andADC by w;, andawy, respectively. Suppose that
there exists a circley tangent to the ra3BA beyondA and to the rayBC beyond
C, which is also tangent to the liné® andCD. Prove that the common external
tangents oty andcw;, intersect orw.

N1 (AUS) Letn be a positive integer and Igtbe a prime number. Prove that if
a, b, c are integers (not necessarily positive) satisfying theatgas
a"+ pb=b"+pc=c"+ pa,

thena=b=c.

N2 (IRN) Letag, ay, ..., an be distinct positive integers,> 3. Prove that there
exist distinct indecesandj such thag; + a; does not divide any of the numbers
3ay, 3ay, ..., 3an.

N3 (IRN) Letay, a1, az be a sequence of positive integers such that the greatest
common divisor of any two consecutive terms is greater thampteceding term,
i.e.(a,a41) > a-_1foralli > 1. Prove that, > 2" for alln > 0.

N4 (SER) Letn be a positive integer. Show that the numbers

(%o (2 (2 i)

are congruent moduld'2o 1, 3, 5...., 2" — 1 in some order.

N5 (FRA) For everyn € N letd(n) denote the number of (positive) divisors of
n. Find all functionsf : N — N with the following properties:

(i) d(f(x)) =xforallxeN;

(i) f(xy) divides(x— 1)y¥~1f(x) for all x,y € N.

N6 (LIT) '™O3 prove that there exist infinitely many positive integessich that
n?+ 1 has a prime divisor which is greater tham-2/2n.
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2.1 Solutions to the Shortlisted Problems of IMO 2008

1. Forx=y=z=wthe functional equation givelgx)?> = f(x?) forall x e R . In
particular,f (1) = 1. Setting,/w, v/X, \/¥, v/Zin the equation yields

f(w) + f(x) _ WHX Whenevemx —
fY+f2  yt+z’ -y

f(y)+1

Choosingz =1 we getw =y/xandf(y/x) + f(x) = (£ +X) - it - Nowif we
placey = x> we getf (x) = x- fg()gﬁl which is equivalent td f (x) — x)(f(x) —

1) =0. Assume that there arew € R, \ {1} such thatf (x) = x and f (w) = 2

V_v.
Choosingy = z= y/wx and placing in the equation impli$+x = (W+X)-
“—\/\/mlz). If f(y/wx) =+/wxthen we havev= 1. Otherwise, iff (1/wx) = 1/+/wx
we getx = 1, contrary to our assumption. Therefore we either higwg = x for
all xe Ry or f(x) = ;1( for all x € R,. It is easy to verify that both functions

satisfy the original equation.

2. (a) Substituting= ;*;,b= % ¢ = ;% the inequality becomes equivalent to
a2 +b? 4+ c2 > 1 while the constraint becomes-b+c = ab-+bc+ca+ 1.
The last equation is equivalent t¢&2+ b+ c) = (a+b+c¢)? — (8% +b? +
A)+2=(a+b+c)?+1—[(@+b%+c?)—1], or [(a+b+c)—1]?=
(a® + b? + ¢?) — 1 which immediately implies tha 4 b? 4 ¢ > 1.

(b) The equality holds if and only &i+b+c=1 anda+b+c=ab-+bc+
ca+ 1. Expressing = 1—a—byields—ab+a+b—a?—b? = 0. It suffices
to prove that there are infinitely many rational numbarfr which the
quadratic equatiob? — (a—1)b—a(a—1) = 0 has a rational solutiom The
last quadratic equation has a rational solution if and diilg idiscriminant
(a—1)2—4ala—1) = (1—a)(1+3a)is a square of a rational number. We

ind infini i p p
want to find infinitely many rational numbegssuchtha 1- a) (1+ 35)

is a square of a rational number, which is equivalentde- p)(q+ 3p)
being a square of an integer. However, for each € N the systeng— p=
(2m+1)? andg+3p = (2n+1)? has a solutiorp = +n—nm? —m, q =
n? 4 n+3m? + 3m+ 1. Keepingm fixed, and increasing would guarantee

that we are getting infinitely many different fractioas- g.

3. (a) Assume thatf,g) is a Spanish Couple oN. If g(a) > g(b) thena>b
(a < bwould yieldg(a) < g(b)). Let us introduce the notation

If we assume thag(x) < x for somex € N we getg(g(x)) < g(x) < x, and
by induction(g*(x))g_, is infinite decreasing sequence fréfiwhich is im-
possible. Hencg(x) > x for all x € N. The same holds fof. If for some
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x € N we hadf (x) < g(x), theng(f(x)) < g(g(x)) < f(g(g(x)) which con-
tradicts (ii). Thereford (x) > g(x) for all x € N. Fromg(f(x)) > f(g?(x)) >
g(g?(x)) we conclude thaff (x) > g2(x) and now easy induction implies
f(x) > g"(x) for all n € N. This is impossible if(g"(x));_; is infinite in-
creasing sequence. Herg&) = x for all x. This can't be true either because
of (ii). This proves that there is no Spanish CoupleNn

(b) The functionsf (a— £) = 3a— { andg(a,b) = a— ;15 form a Spanish
Couple on the given s&

4. Using the given properties we ge2) = f(2°+0) = f(2° —3) — f(0) = —1,
f(3)=f(2+1)=1(2-2)—1(1) =2, f(4) = —2. For everyi € {1,2,3} we
havef(2”—i) f214 201 i) = f(2t (21 —i)) - f(2”*1—i) If
2|nthen21—i=2-i=—(i+1)(mod3),and if Inthen 21 —i=—(i—

1) (mod 3). Denotey, = (2% —i) andbj = (22“1 i). From the previous
calculation we ge@ b2 — bl , andb} = a, ! —al. This further implies that
al=2a, | —al- aktll. By induction we now obtaia} = 231, a = a3 =
—3<L This further gived} = a2 — al = —3, b2 = 3, b3 = 0. Moreover, for
eachne Nand eache {1,2,3}: f(2"—i) >O|fand onIy|f3| 2N 1f3|2"—i
thenf (2" —i) > 3"2, In addition,| f (2" —i)| < 2-3("-2)/2,

Assume thatp > 1 is an integer. Let,...,a; be positive integers such that
3p=2%+...+ 2% In order to provef (3p) > 0 let us start with

f(3p) = f (27 —t(2%2 4. 4+2%)) — f (272 — 1 (2% 4 .- +-27))
+f (203+...+20|)_

Sincex+y = x—t(y) (mod 3) the first term on the RHS ¥s3%/2 while f (292 —
t(298 4 ... 4 29)) < 0. It suffices to establish(293 + ... +29) < 391/2, | et us
prove the following] f (m)| < 3"/2 for all m, nwith m < 2",
The last statement is true far= 1, 2. Assume that the statement holds for some
nand assume thah < 21, If m < 2" we are done. Otherwise, lgt= 2"+ |,
for some 0< j < 2. [f(m)| = |£(2" —t(j)) — f(j)] < [f(2 —t()| + | F(})]-
Since|f(2"—t(j))| < 2-3"2/2and|f(j)| < 3"V? we get|f(m)| < 3"1)/2,

5. Using the inequality between arithmetic and geometriamee get:
3 El_|_t_)+g_|_9 + 9+E+9+E
b d a a b d
a b a d a d
(2b+ +d) (2++>< o)+ (554 d)
4 03
> 44 +4 +4 4(a+b+c+d)
(a+b+c+d).
The required inequality now follows immediately.

>3<b+ +d+ ) c+
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Assume the contrary, thétis onto. There exists a sequence of numigrsuch
that f(apn) =n.

If f(u)=f(v)thenf(u+1/n)="f(an+1/f(u))="f(an+1/f(v))=f(v+1/n)
for all n € N and by inductionf (u+m/n) = f(v+m/n) for all mn € N.
Applying thistou=a;, v=a;+ 1/f(ay — 1), andn = f(a; — 1) we get 1=
f(ay) = f(ag+1/n)= f(as+2/n)=--- = f(ay +1). This further implies that
f(ay +9+1) = f(ay +q) for all rational numbers.

For fixedy we have

ro={r (2 inent =i (ys k) ixer)
_{f(x+T1y)):xeR}_N.

Particularly,I (a;) = N so we could assume thap,as,... are chosen from
I (a1). Hence for eacn > 2 there existk, € N such thata, = a; + 1/kn.
Now we havef (&g +1/n) = f(ag +1/f(an)) = f(an+1) = flaa+ £ +1) =
f(ag+1/kn) = f(an) =n.

Sincerl (a1 + 3) = N there existdd such thatf (a; + 3 + ) = 1. Assume that
% + % = g for relatively prime numberp andg. Since% + % #1 we havey > 1.
Letk be an integer such thap = 1 (modq). Then 1= f(a; + p/q) = f(ay +
kp/q) = f(a1 +1/q) = g which is a contradiction.

. The left-hand side can be rewritten as

_ (a=c)? (b—d)?
~a+b+c b+c+d

2d+b 2c+a
(a-c)(b—d)- ((b+ crd(dtartb (arbroct d+a)> '

In order to prove that > 0 it suffices to establish the following inequality:

2d+b 2c+a
(a=c)(b—d) ((b+ ct+d)(d+a+b) (a+b+c)(ct d+a))
—2|(a—c)(b—d)|

~ Va+b+c-vbrc+d

If a=corb=d the inequality is obvious. Assume that> c andb > d. Our
goal is to prove that

2d+b 2c+a 2

< .
(b+c+d)(d+a+b) (a+b+c)c+d+a)|~ varb+c-vbt+c+d

Both fractions on the left-hand side are positive, hence #nough to prove
that each of them is smaller than the right-hand side. Theseeirtequalities
are analogous, so let us prove the first one. After squarirnly &ides, cross-
multiplying, and subtracting we get:
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—(2d+b)*(a+b+c)+4(d+a+b)*(b+c+d)
= —(2d+ b)) (a+b+c) +[(2d+b) + (2a+b)|*(b+c+d)
= —(2d+b)%-a+ (2d+hb)?-d+ (2a+b)?(b+c+d) +
2-(2d+b)(2a+b)(b+c+d)
> —(2d+b)?-a+ (2d 4 b)(2a+ b)(2b+ 2c 4 2d)
> —(2d+b)?-a+ (2d+ b)?(2a+b) > 0.

The equality holds if and only & = candb = d.

. The largest such is equal to 6. Six
boxes can be placed in a plane as Bs
shown in the picture. E
Let us now prove that < 6. Denote by ] B2
X; andy; the projections of the boR; Bs
to the linesOx and Oy respectively. If Bs
i  j+1 (modn) thenX N X; # 0 and I |
YinY;#0.1fi=j£1 (modn) then
X@ﬂXi =0 OI’YiﬂYj =0.

We will now prove that there are at most 3 valuesifeuch thatxin X, 1 = 0.
Assume thak; = [ag, by, ..., Xn = [an, bn]. Without loss of generality we may
assume thaty = max{ay,ay,...,an}. If by < a; for somei € {2,3,...,n} then
XiNXy =0 hencel € {2,n}. Thereforea; € X3NXgN---NXy—1 and Xy N Xz,
XnNXn-1, X3 N Xz, and Xy N X, are the only possible intersections that could
be empty. We will prove that not all of these sets can be enftgume the
contrary. Theras € (by,a;), by € (83,81), andan_1 € (bn,&1). This implies that
an_1 > by andX,_1 N X, = 0, a contradiction.

In the similar way we prove that at most three of the inteisasty; NY, ...,
YnNY; are empty. However there aneempty sets among the intersectioas)

Xo, Xo N Xz, ..., XnN X1, YINY2, YoaN Y3, ..., YaNY; yieldingn < 34+ 3=6.

. Let us call a permutationice if it satisfies the stated property. We want to cal-
culate the numbex;, of nice permutations. Far = 1,2, 3 every permutation is
nice hence, = n! for n < 3.

Assume now thah > 4. From(n—1) | 2(a1+ -+ an-1) = 2[(1+---+n) —

an) =n(n+1)—2a, = (n+2)(n—1) — 2(a, — 1) we conclude thatn—1) |
2(ap—1). If nis even we immediately conclude tre@t=nora, =1.

Let us prove that, € {1,n} for odd n. Assume the contrary. Them— 1 =
2(a—1), i.e.an = "L Thenn—2|2(a; + - +a,2) = n(n+1) — 2a, —
2a,_1=n(n+1)—(n+1)—2a,_1 = (n—2)(n+ 2) + 3— 2a,_1 which gives
n—2|2ay 1—3.Since®L3 <208 _ 14 1 ~2wegen—2=2a, 1 3.
This implies thata, 1 = %1 = ap which is a contradiction.

Therefore, fom > 4 we must have, € {1,n}. There arex,_1 nice permuta-
tions fora, = n, and fora, = 1, the problem reduces to counting the nice per-
mutations of the se{2,3,...,n} satisfying the given property. However, since
21+ +a) =2k+2((ag—1)+--- (ax— 1)) we getk | 2(ag +- - - + &) if and
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onlyif k| 2[(a1 —1) +---+ (ax— 1)]. This provides a bijection between the nice
permutations 0of2,3,...,n} and the nice permutations 61,2,...,n—1}. Thus
we havex, = 2x,_1 for n > 4, which impliesx, = 2" 3.x3 = 6-2" 3 forn > 4.

10. Since the area of a trianghC is equal to%|,073> X A—C>| we have that0,0) and
(a,b) arek-friends if and only if there exists a poifx,y) such thatay — bx =
+2k. According to the Euclid’s algorithm such integetsandy will exist if
and only if gcd(a,b) | 2k. Similarly (a,b) and(c,d) arek-friends if and only if
gcd(c—a,d—Db) | 2k.

Assume that there existskeclique S of sizen?+ 1 for somen > 1. Then there
are two elementga, b), (c,d) € Ssuch thata = ¢ (modn) andb = d (modn).
This impliesn | gcd (a—c,b—d) | 2k, or equivalentlyn | 2k.

Therefore, for &-clique of size 200 to exist, we must hameé 2k for all n €
{1,2,...,14}. Therefore&k > 4-9-5-.7-11-13= 180180.

Itis easy to see that all lattice points from the squ@r&4]? are 180180-friends.

11. The number of sequences in which the langswitched (on or off) exactlg;

times {=1,2,...,2n) is equal tom. Therefore

1
M:k!.z{m:al+---+an=k,2+a1,...,2+an}. (1)

Similarly we get
1

N=k-
Z al---on! Bl B!’
where the summation is over all possiblg ..., an, B1, ..., Bn that satisfya; +
ot tn+ P+ 4+ 8=k 2tas, ..., 21an, 2| B, ..., 2| Bn. We see that the
sum in (1) is equal to the coefficient ¥ in the expansion

f(X) = <x+)§—!3+>;—f+---> = sinH'(X)

while the sum in (2) is equal to the coefficientXf in the expansion

X3 X5 " X2 x4 "
g(X):(X—i—ﬁ—Fﬁ—i—---) '(1+g+m+"')

= sinH'(X) - cost'(X) = %sinH“(ZX).

Assume that sinfhX) = Efio_ajxi for some real numbery, a,, .... Then we
have sinA(2X) = 57° gai(2X)' = ¥{* yai - 2'- X'. Therefore

N kl-ay ok

12. Letm be the average of all elements frd@ni.e.m= k—il(xl+x2+ o Xt )
Denotel” (A) = £ SxeaX. SetAis nice if and only if| (A) —m| < %. For each
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permutationt = (75, ..., Tk ) of Sconsider the seta, A, ..., A7 defined
asA'= {1, 1,..., k1) (indeces are modulo+1). We will prove that at
least two of the set#y" are nice. Let us paint the sef¢" in red and green in
the following way:A" is green if and only if” (A") > m. Notice that/™ (A]) —
(A" ,) = £(15 — 1) is of absolute value< §. Thereforell () —m| < %
or |I(A™ ;) —m| < . Hence whenever two consecutive sets in the sequence
AT,..., AT, are of different colors one of them must be nice. If therear2
sets of each of the colors, it is obvious that at least two efsits will be nice.
Assume that there is only one red set and that it is the only sét. Without
loss of generality assume th&f is red. Therm(k+1) =TI (AT)+ T (AY)+---+
I (AL) > (M= %)+m+ g +---+m+ % > (k+|)mwhich is a contradiction.
Now we can prove the required statement. To eadtk efl)! permutations ofs
we assign at least two nice sets. Each set is couhted) - k! - I! times so there

1 .
are at leas “k(il')' - g nice sets.

We will prove a stronger result, that for edctve have

k

_;(ISI—(H 1)) < (2n+1)-2" L (1)

The desired statement follows from (1) becaus&if> 2n+ 2 for eachi then
(2n+1)-2"1>2". (n+ 1) which is impossible.

We will use induction onn to prove (1). First, forn = 1 and any subsets
S, S, 0f {1,2,3,4} we want to proveSy | +-- -+ |S| < 2°-3+k(1+1) =
3+ 2k. It suffices to verify this only whelf§| > 3 for eachi. If there is one set
with four elements, thek = 1 and the inequality is satisfied. If all sets have
cardinality 3, therk < 3 ({1,3,4} and{2,3,4} can’t be both among the chosen
sets), hencelB< 6+ 2k.

Assume now that the statement is true for 1. Let us divide the subsets
S,...,Sof {1,2,...,2"1} in two families:.” = {Ay,...,A’} —those with all
elements greater thaf,2and% = {B, ..., Bx_| } — the remaining subsets. Using
the inductional hypothesis we obtal_; (|A| — (n+1)) < (2n—1)-2"2 1.
Let us denote by the smallest element & N {2"+1,...,2"1} if it exists.
LetHi =Bin{1,...,.2" andG; =B N {2"+1,....2" 1\ {g;}. If i < | we
claim thatG N G; = 0. If not, considering € G; N G;j and takingy = a;j, X € H;
we get a contradiction since< y < zandx,z € Bj, y,z<€ B;.

SetsG; are disjoint, and the inductional hypothesis holds for $@tshence
SIC1(B = (n+1) = SIS (IHi| — ) + 515 |Gi| < (20— 1)2"-24 2. Thus

_i(lsﬂ —(n+1) < (2n-1)-2" 2.2 +2"< (2n+1)2" L,

LetA, B', C' be the midpoints oBC, CA, AB, respectively, and\’, B”, C"
be the midpoints oHA, HB, HC respectively. LetO be the circumcenter of
AABC andRits circumradius. Pythagoras theorem impli#g = OA2+ A/A? =
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2 Solutions

OA’2 + A'H2. SinceHA'OA” is a parallelogram we have th@A? + AH? =
%(OH2+A’A”2). However, sincé”A'OAis a parallelogram we have th&#’ =
OA = R. ThusOA? = (R?+ OH?). Similar relations folOA, OBy, OBy, OC;,
OC, imply that the point?\1, Ay, By, B2, Cy, C; lie on a circle with cente®.

Assume that the distribution of the points is such ABEF is a convex quadri-
lateral andC belongs to the segmeBE (other cases are analogous).

Let JF = p, Fl =q, IK =r. Then

KE =q+r. Let us further denotBl =

s, IC=t,JA=X, AB =Y. SinceABEF

is cyclic we haveJA-JB = JF - JE, D s
i.e. X(x+y) = p(p+ 29+ 2r). From

CD|JB we have$ = I and ;1

P y

D
etz - The last three equalities im- X
ply thatst = q(q+ 2r). J

The quadrilateraABK| is cyclic if and only if x(x+y) = (p+q)(p+q+T).
JCKD is cyclic if and only if (p+ g)r = st. We want to prove that

X(X+y)=(p+a)(p+q+r) < (p+qr=4=

Using the equalities we already have, we can elimirakery, s, andt from the
previous equivalence. Hence it suffices to prove that:

p(p+2q+2r) (p+ayr

(p+a)(p+a+r) a@+2r)
& [p(p+29+2r)=(p+a)(p+g+r) < (p+q)r=0q(g+2r)].

The last equivalence becomes obvious once we multiply elteéhms.

Let us first consider the ca& # EP. Assume thaEQ < EP and denote
by A’ andD’ the intersections oEA and ED with the circumcircle ofAPQD.
ThenZPAA' = Z/PAD’ + /D'AA’ = /PAD’ + ZD'DA’ while /QDD’ = ZQDA' +
/A'DD' hence/QDA' = /PAD’. This means that’Q = PD’ and A'D’||QP.
Therefore/DEQ = Z/DD’A’ = Z/DAA’ henceQE is a tangent to the circumcir-
cle of ADAE. LetM be the intersection AD andPQ . ThenMEZ = MD - MA.
SinceAPQD is cyclic we have tha¥iD - MA = MQ-MP henceME2 = MQ- MP.
Assume thaBC intersect$Q at a pointN. ThenNE? = NQ- NP, and since there
is the unique poink on the linePQ for which XE2 = XQ- XP we conclude that
M = N. Now fromMD - MA = ME? = MC - MB we get thatABCD s cyclic.

If EQ = EPthenitis easy to prove that the perpendicular bisectoARBC,
PQ coincide henc@&BCD is an isosceles trapezoid hence it is cyclic.

LetM be the intersection point @F andPE. We need to prove thatQMP =
/BAC. Since/ZMQP = ZQAB (QB is a tangent to the circle arountiQFA)
it is enough to prove that QAB + /BAC = ZQMP + Z/MQP, or, equivalently
/QAE = ZEPC. Therefore we need to prove th@®PE is a cyclic quadrilateral.
From BQ? = BF - BA = BP? we getBP = BQ. Adding BF - BA = BP? to AF -
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AB = AE - AC (which holds sincdCEF is cyclic) we getAB? = AE - AC+ BP2.
From Pythagoras theorem we haA®? = AE? + BE? = AE? + BC? — CE? we
getBC? — CE? = AE - EC + BP2. This implies thaBC? — BP?> = CE? + AE - EC,
or equivalently

CE - (CE + AE) = (BC+ BP)(BC — BP) = CQ-CP.

ThusCE - CA=CP-CQ andQPEA s cyclic.

We will use the induction ok. The statement is valid fdt = 0 as there is at
least one poinP for which (OP) doesn't intersect any of the lines fram
Assume that the statement holds kor 1. Consider the poir® and the line (or
one of the lines if there are more) whose distance f@®@imthe smallest. Denote
this line byl. That line contains — 1 points froml. We will first prove that there
are at leask+ 1 red points orl. We start by noticing that there exists a point
P e 1Nl such that OP) doesn't intersect any of the lines from P divides the
linel in two rays — assume that one of them contains the pBinB,... R, €1,
while the other ray contains the poir@s,...,Qn 2y € |. Assume thaBs are
sorted according to their distance frdtnand the same holds f@;s. Consider
the open segmen(®R ) and(OP_1). Each line not containing any & andPR 1
must intersect either both or none of these segments. Téedissing througR
(other than) could intersectOR_ 1) and similar fact holds for the line passing
throughPR ;1. Hence the number of intersections(@P) and(OR,. 1) with lines
from L differ by at most 1. Therefor®, Py, ..., Pyingku are all red. Similar
holds forQ;s hence there are at le&st 1 red points on.

If we removel together withn — 1 points on it, the remaining configuration al-
lows us to apply the inductional hypothesis. There are m@a- (k+ 1) points

G from |\ {I} for which (OG) intersects at most— 1 lines fromL\ {I}. There-
fore there are at leagk- (k+ 1) + k+ 1= 3(k+ 1)(k+ 2) red points.

Assume first that there exists a pd¥ihsideABCD with the described property.
Let K, L, M, N be the feet of perpendiculars fromto AB, BC, CD, and DA
respectively. We havgKNM = ZKNP+ ZPNM = Z/KAP + Z/PDM = 90° and
similarly ZNKL = ZKLM = ZLMN = 9(° henceKLMN is a rectangle. Denote
by W, X, Y, Z the feet of perpendiculars frod to KL, LM, MN, and NK.
FromAPLX ~ APCM we get thaCM = Xk -PM = PM - E¥. Similarly DM =
PM-EZ CL=PL- 5, BL=PL-5Z. Notice that

PW - PY
CM:DM = P7 PX =CL:BL

henceBD||ML. Similarly AC||LK henceAC L BD.

Conversely, assume thaBCD is a convex quadrilateral for whiokC | BD. Let

P’ be any point in the plane and consider a triarfgl€’L’ for which M’L’||BD,
P'M’ 1. CD, andP’L’ L CB. Let K’ be the point for whichPK’ 1. AB and
K'L’||AC. LetN’ be the point such th&’'L'M’N’ is a rectangle. Consider the four
linesay, aj, am, an throughK’, L', M’, N’ perpendicular t&’K’, P'L’, PM’, and
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P'N’ respectively. Le = axnan, B = axna;,C' = oy Nam, andD’ = amN an.

Using the previously established result we ha¥€'||K’L’ andB'D’||M’L’. We
also haveC'D’||CD, B'C||BC, A'B'||AB hence/AADCB ~ AD'C'B' and AABC ~

AA'B'C'. Thus there exists a homothety that takéB'C’'D’ to ABCD and this
homothethy will mag? into the pointP with the required properties.

20. LetM, N, P, Q be the points of tan-
gency of w with AB, BC, CD, and
DA, respectively. We have tha#B +
AD = AB+ AQ—- QD = AB+ AM —
DP =BM —-CP+CD =BN—-CN +
CD = BC +CD. Denote byX andY
the points of tangency ofy and w,
with AC. Then we haveAB = AX +
BC — CX and AD = AY +CD — CY.
Together withAB + AD = BC + CD this yields toAX —CX = CY — AY. Since
AX 4+CX =CY + AY we conclude thadX = CY henceY is the point of tangency
of AC and the excirclevg of AABC that corresponds t®. Similarly, the excircle
wp corresponding t® of AADC passes throug.

Consider the homothety that magsg to w. Denote byZ the image ofY under
this homothetyZ belongs to the tangent af that is parallel taAC. ThereforeZ is

the image o under the homothety with centBrthat mapsuw to w. Denote by

X" andY’ the intersections obX andBY with «» andw, respectively. Circles
w; and wg are homothetic with centeB, henceY’ the image ofY under this
homothety. Moreovelk’ belongs to the tangent of; that is parallel toAC. This
implies thatXY’ is a diameter otv. Similarly, X'Y is a diameter ofw,. This
implies thatX'Y || XY’ which means thahZX'Y ~ AZXY’ andZ is the center of
homothety that maps;, to w;. This finishes the proof of the required statement.

21. Assume the contrary. If two of the numbers are the sanresbare all three of
them. Let us therefore assume that albpb, c are different. The given condi-
tions imply that

a'-b" p"—c" c"-a"

a—b b-c c-a

which immediately implies that some of the numbayrb, c have to be negative.
Moreover,n can't be odd since otherwise each of the fractions would k- po
tive. Assume first thap is odd. Since 2 % =a"l+a" %+ + b Lthe
numbersa andb have to be of different parity. Similarly,#—cand 2tc—a
which is not possible.
We are left with the casp = 2. Writing n = 2m we derive(a™ +b™) - (b™ +
™) - (c™ 4 @My . BT BEch cal _ g This means tha™ + b™ = +2,
a™—b™= +(a—b) and analogous equalities hold for the palisc) and(c, a).
If mis even thena| = |b| = |c| = 1 which means that at least two afb, ¢ have
to be the same.

= _p37
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If mis odd thent2 = a™+ bMis divisible bya+ b. Sincea™+b™ = a+ b (mod
2) we conclude tha+ b= £2. Similarlyb+c= £2 andc+a= +2. At least
two of a, b, c have to be the same which is a contradiction.

Remark. The statement of the problem remains valid if we replace ssemp-
tion thatp is prime with the assumption|2 or p = 2.

Assume the contrary. Without loss of generality we mayae that these num-
bers are relatively prime (otherwise we could divide thenth®jr common divi-
sor). We may also assume thmt< ay < --- < a,. Foreach € {1,2,...,n—1}
there existsj € {1,2,...,n— 1} such thata, + & | 3a;. This together with
an+ & > aj implies thata, + ; is divisible by 3 for alli.

There existk € {1,2} such thata, = k (mod 3) andg; = 3 — k (mod 3) for all

i #n. Foreach € {1,2,...,n— 2} there exist§ such thag,_1 + & | 3a;. Since
an—1+ & is not divisible by 3 we must hava,_1 + & | a; hencej = nand we
conclude thab, 1+ @ | an foralli € {1,2,...,n—2}. Letl € {1,2,...,n} be
such an integer for whici, +a,_1 | 33 . Adding the inequalitiea, +a,_1 < 33
anda, 1+ a < a, gives thata, ; < g thus eithet =norl =n—1.

In the first casai(a,_1 + an) = 3a, for someu € N. We immediately see that
u< 3andu> 1. Henceu= 2 and &, 1 = an. However, this is impossible since
for eachi € {1,2,...,n— 2} the numbenr,_; + & dividesa, = 2a,_1.

On the other hand, #,_1+ an | 3a,_1 then there existg € N for whichv(a,_1 +
an) = 3ay-1. If v> 2 then 2,1+ 2a, < 3a,_1 which is impossible. Hence

v =1 and we gebt, = 2a,_1. In the same way as in the previous case we get a

contradiction.

We will use the induction on. Observe that, > (an;1,an) > a,—1. Obviously,
ap>1,anda; > ap+1> 2. Fromag 1 —ax > (aky1,a) > a1 +1we getap >
4 andag > 7. Itis impossible to havas = 7 since(as,az) > a; = 2 would imply
ap = 7 = az. Hence we have that the statement is satisfiethfo£0, 1,2, 3}.
Assume thanh > 2 anda; > 2' for all i € {0,1,...,n}. We need to prove that
ani1> 2", Let us denotd, = (8n+1,an). We haved, > an_1. Letap 1 = kdy
andap = ld,. If k> 4 we are done becauag 1 > 4d, > 4a,_ > 4. 2" 1 =21,
If | > 3 thenap, 1 > an impliesk > 4. If | = 1 thenap, 1 > 2a, > 2"L,

Hence the only remaining case to consideais= 3dy, an_1 = 2d,. Obviously,
On— 1_gdn,an 1) > an_ 2 If an_1=dn_ 1thenfroman 1 < dn andan_1 | 2dy
we getz " b > 3 anddy > 3an_1> 3.2 Nowan 1 = 3dn > 9272 > 21,
If an_1 > > 3dn 1 thendn > a1 > 3dn 1. Sinced,_1 = (Zdn,an 1) there exists
s e N such that &, = sdy_1. This implies thad,, > 3- ” which means > 6,
ors> 7. Therefore &, > 7d,_1 > 7-2" 2 andap,1 = 3dn > 2ntl,

It remains to consider the cagg 1 = 2d,_1. From(2dy, 2dn_1) = dn_1 We con-
clude thatd, = d"2*1w for some odd integew > 3. Froma,_; < dy we get
2dn_1 < dn hencew > 5. If w > 7 thenay.1 > 3-7- % >21.2n3 > ontl
hence it remains to consider the cagse= 5. We now have 223 < a,_3 <
On 2 = (20n_1,8n 2). If @n_2 > 2dy_» then 21 > 3dy_» > 3-2"3. There-
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forean,1 = 3- % > 45.2"4 > 21 |f g, , = dy_» then froma,_» < dn_1
we get again @,_1 > 3d,_» andap, 1 > 2",

First we prove that the numbe(r’srffl) are all odd. LeM be the largest integer
for wheich 2/ divides(2" - 1)!. ThenM = 3 [2” =] =2 -1).
The largest numbe for which 2V dividesk! - (2" — 1 — k)! satisfies

32 )

Each summand on the right-hand side is equaltd 2 1 (writek = ¢ - 2' +r;,
for0<ri < 2'). HenceM =N and(2 1) is odd.

Let us prove that(2 l) give different remainders moduld'2This is valid

for n = n1+.1 Assurrpg that this holds f}or some> 1.nWe claim that the sets
A= {(2 Zi’l), (22i+11)} andB; = {(2 i’l),2”+1— (2 i’l)} are the same mod-
ulo 21 foreachi =0,1,...,2"1— 1. We also claim that that all numbers from

Uznfllei are different modulo 1. These two claims will imply the desired
result. Let us show tha(l2n+1 h= (anﬁll) (mod 2*1) and that one of these

two numbers is congruent(& [1). The first congruence follows from
2n+l -1 2n+1 2n+1 -1
< 2i > - (2i+1)_( 2i+1 >
o+l sont+l_ q o+l q
_2i—+1< 2i )_(2i+1>

B on+l_ q 1
:—( 241 )(modz1 ),

while the second is true because

2n+l_ 1 B i—1 2n+1_ (Zk—i—l i 2n+1 2k
2i e 2k+1 D
i-1
B [‘2‘] 2n+l_ (2k—|— 1) |_| _
L k+1 M7k
. n__
= (—1)'-(2 i 1) (mod 2'*1).

It remains to show thay?, ~'Bi have all elements different moduld2.
Inductional hypothesis implies thé@n’l) has different remainder tha(r?rn’l)
for i # j. The same holds for2® — (#""1) and 21 — (2n Y. From (%, %) +
(3:3) = 2" we have tha(? [ 1) = 2" — (¥ ;) =0 (mod 2*?) if and only if
there existk such that{i, j} = {2k,2k+ 1} for somek. However, in that case
(*7)+ (7Y = (%) £0 (mod 2,
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If pis a prime number, thed(f(p)) hasp divisors, and must be a power of a
prime. Hencef (p) = gP~* for some prime numbey. Let us show that) = p.
Consider first the casp > 2. Fromf(2p) | (2—1)- p?P~1. f(2) and f(2p) |
(p—1)-22P~1.f(p) = (p—1)-2?P~1.gP~! we conclude thaf (2p) | (p?P~*-
f(2),(p—1)-2%°"t-qP 1) = (f(2),(p—1)- 2% 1-qP1). Sincef(2p) has D
divisors andf (2) is prime this is a contradiction. We also ha®) = 2. Indeed,
this follows fromf (6) | 35-1- f(2), f(6) | 2-26-1.33%-1 andd(f(6)) = 6.
Assume now thax = pél‘1 .-+ pé is a prime factorization ok with p; < --- <
Pn. Let f(x) = - P, Fromd(f(x)) = p&--- p& = (by +1)--- (b + 1) we
conclude thab; > p; — 1 for alli. The relationf (x) | (py — 1)~ (p5* *- - pa)*-1.
f(p1) yieldstoqy,...,dm € {p1,---, Pn}. Hence for each primpand eactac N
there isb € N such thatf (p?) = pP. Fromp? = b+ 1 we getf (p?) = pP* L.
Now assume that € N. There are integeray,...,an,bs,...,b, such thatx =
p...pa and f(x) = pd--- pbn. For eachi € {1,...,n} we havef(x) | (p* —

a3 3

1) (x/pf L. pipi - hencepibi | pipi ~* which impliesb; +1 < p*. Multiplying

this fori =1,...,nwe getd(f(x)) = (b1 +1)--- (bn+1) < pf*--- p2 =x. Since
617

d(f(x)) = x we must havé; = p — 1 for alli and f(x) = pfl L ph

It is easy to verify that functiorf defined by the previous relation satisfies the

required conditions.

2n_1

If pis any prime number of the forma = 1(mod 4 we know that(%) =1

and there are exactly two numberam € {0,1,2,..., p— 1} whose square is
congruent to—1 modulop. Since the sum of these two numbers is equal,to
one of them is smaller thagoy 2. Assuming thah < p/2 let us denot& = p—2n.

It suffices to prove that there exist infinitely many prime rharsp for which
k> +2n Fromp|n+1= w + 1 we conclude thap | k? + 4. This
implies thatk® > p— 4. It suffices to prove thgi—4 > 2n, i.e. 4< p—2n=kfor
infinitely many values of). However, this will be satisfied sindée> \/p—4 > 4
for p > 20, and there are infinitely many prime numbers greater tlaha are
congruent to 1 modulo 4.
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notaticsedtheory, algebra, logic,
geometry (including vectors), analysis, number theorgl(ding divisibility and
congruences), and combinatorics. We use this notatiorglilye

We assume familiarity with the basic elements of the gamédets (the movement
of pieces and the coloring of the board).

The following is notation that deserves additional clasfion.

o A(A,B,C), A—B—C: indicates the relation dfetweenness, i.e., thatB is be-
tween A and C (this automatically means th#, B,C are different collinear
points).

o A=I1Nl,: indicates thaf is the intersection point of the linésandl,.

o AB: line throughA and B, segmentAB, length of segmenfB (depending on
context).

o [AB: ray starting inA and containindg.
(AB: ray starting inA and containindg, but without the poinA.
(

o [AB]: closed intervaAB, segmenfB, (AB) U{A,B}.

o (AB]: semiopen intervahB, closed aB and open af, (AB) U {B}.
The same bracket notation is applied to real numbers,[a,8),= {x|a<x<

b}.
o ABC: plane determined by poings B, C, triangle ABC (AABC) (depending on
context).

AB): open intervalAB, set of points betweef andB.

o [AB,C: half-plane consisting of linéB and all paoints in the plane on the same
side of AB asC.

o (AB,C: [AB,C without the lineAB.
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D —
o (@, b),a- b:scalar product ol and b .

o a,b,c a,p,y: the respective sides and angles of triarBE (unless otherwise
indicated).

o k(O,r): circlek with centerO and radius.
o d(A, p): distance from poinA to line p.

© SaAy A [A1A2. . Ay area ofn-gonAiA; ... Ay (Special case fon = 3, Sagc:
area ofAABC).

o N, Z, Q, R, C: the sets of natural, integer, rational, real, complex nerslfre-
spectively).

o Zn: the ring of residues modulg n € N.
o Zp: the field of residues modulp, p being prime.

o Z[x], R[x]: the rings of polynomials i with integer and real coefficients respec-
tively.

o R*:the set of nonzero elements of a riRg

o Rla], R(a), wherea is a root of a quadratic polynomial R[x|: {a+ba |a,be
R}.

o Xo: XU {0} for X such that G# X.

o Xt, X7, aX+b,aX+bY: {x|xe X,x> 0}, {x]| xe X,x< 0}, {ax+b|xe X},
{ax+by|xe X,y € Y} (respectively) foiX,Y CR, a,b e R.

o [X], [X]: the greatest integer smaller than or equal.to
o [x]: the smallest integer greater than or equal.to

The following is notation simultaneously used in differeohcepts (depending on
context).

o |AB|, ||, |S: the distance between two poiB, the absolute value of the num-
berx, the number of elements of the skfrespectively).

o (xy), (mn), (a,b): (ordered) paix andy, the greatest common divisor of inte-
gersmandn, the open interval between real numbaendb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviatas much as possible.
However, one nonstandard abbreviation stood out as pkntigwonvenient:

o w.l.o.g.: without loss of generality.
Other abbreviations include:

o RHS: right-hand side (of a given equation).
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LHS: left-hand side (of a given equation).

QM, AM, GM, HM: the quadratic mean, the arithmetic mean, te®metric
mean, the harmonic mean (respectively).

gcd, Icm: greatest common divisor, least common multipgsgectively).
i.e.:in other words.

e.g.: for example.
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Codes of the Countries of Origin

ARG
ARM
AUS
AUT
BEL
BLR
BRA
BUL
CAN
CHN
COL
CRO
CuB
CYP
CZE
Czs
EST
FIN
FRA
FRG
GBR
GDR
GEO
GER
GRE

Argentina
Armenia
Australia
Austria
Belgium
Belarus
Brazil
Bulgaria
Canada
China
Colombia
Croatia
Cuba
Cyprus

Czech Republic
Czechoslovakia

Estonia
Finland
France
Germany, FR

United Kingdom

Germany, DR
Georgia
Germany
Greece

HKG
HUN
ICE
INA
IND
IRE
IRN
ISR
ITA
JAP
KAZ
KOR
KUw
LAT
LIT
LUX
MCD
MEX
MON
MOR
NET
NOR
NZL
PER
PHI

Hong Kong
Hungary
Iceland
Indonesia
India

Ireland

Iran

Israel

Italy

Japan
Kazakhstan
Korea, South
Kuwait
Latvia
Lithuania
Luxembourg
Macedonia
Mexico
Mongolia
Morocco
Netherlands
Norway
New Zealand
Peru
Philippines

POL
POR
PRK
PUR
ROM
RUS
SAF
SER
SIN
SLO
SMN
SPA
SVK
SWE
THA
TUN
TUR
TWN
UKR
USA
USS
UzB
VIE
YUG

Poland
Portugal
Korea, North
Puerto Rico
Romania
Russia
South Africa
Serbia
Singapore
Slovenia
Serbia and Montenegro
Spain
Slovakia
Sweden
Thailand
Tunisia
Turkey
Taiwan
Ukraine
United States
Soviet Union
Uzbekistan
Vietnam
Yugoslavia



