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1

Problems

1.1 The Forty-Nineth IMO
Madrid, Spain, July 10–22, 2008

1.1.1 Contest Problems

First Day (July 16)

1. An acute-angled triangleABC has orthocenterH. The circle passing throughH
with center the midpoint ofBC intersects the lineBC at A1 andA2. Similarly,
the circle passing throughH with center the midpoint ofCA intersects the line
CA at B1 andB2, and the circle passing throughH with center the midpoint of
AB intersects the lineAB atC1 andC2. Show thatA1, A2, B1, B2, C1, C2 lie on a
circle.

2. (a) Prove that
x2

(x−1)2 +
y2

(y−1)2 +
z2

(z−1)2 ≥ 1

for all real numbersx, y, z, each different from 1, and satisfyingxyz = 1.
(b) Prove that equality holds above for infinitely many triples of rational num-

bersx, y, z, each different from 1, satisfyingxyz = 1.

3. Prove that there exist infinitely many positive integersn such thatn2 + 1 has a
prime divisor which is greater than 2n +

√
2n.

Second Day (July 17)

4. Find all functionsf : (0,+∞) → (0,+∞) (so, f is a function from the positive
real numbers to the positive real numbers) such that

( f (w))2 +( f (x))2

f (y2)+ f (z2)
=

w2 + x2

y2 + z2

for all positive real numbersw, x, y, z, satisfyingwx = yz.
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5. Let n andk be positive integers withk ≥ n andk− n an even number. Let 2n
lamps labelled 1, 2,. . . , 2n be given, each of which can be eitheron or off.
Initially all the lamps are off. We consider sequence ofsteps: at each step one of
the lamps is switched (from on to off or from off to on).
Let N be the number of such sequences consisting ofk steps and resulting in the
state where lamps 1 throughn are all on, and lampsn +1 through 2n are all off.
Let M be the number of such sequences consisting ofk steps and resulting in the
state where lamps 1 throughn are all on, and lampsn +1 through 2n are all off,
but where none of the lampsn +1 through 2n is ever switched on.
Determine the ratioN/M.

6. Let ABCD be a convex quadrilateral with|BA| 6= |BC|. Denote the incircles of
trianglesABC andADC by ω1 andω2 respectively. Suppose that there exists a
circle ω tangent to the rayBA beyondA and to the rayBC beyondC, which is
also tangent to the linesAD andCD. Prove that the common external tangents of
ω1 andω2 intersect onω .

1.1.2 Shortlisted Problems

1. A1 (KOR) IMO4 Find all functionsf : (0,+∞) → (0,+∞) (so, f is a function
from the positive real numbers to the positive real numbers)such that

( f (w))2 +( f (x))2

f (y2)+ f (z2)
=

w2 + x2

y2 + z2

for all positive real numbersw, x, y, z, satisfyingwx = yz.

2. A2 (AUT) IMO2

(a) Prove that
x2

(x−1)2 +
y2

(y−1)2 +
z2

(z−1)2 ≥ 1

for all real numbersx, y, z, each different from 1, and satisfyingxyz = 1.
(b) Prove that equality holds above for infinitely many triples of rational num-

bersx, y, z, each different from 1, satisfyingxyz = 1.

3. A3 (NET) Let S ⊆ R be a set of real number. We say that a pair( f ,g) of
functions fromS to S is a Spanish Couple on S, if they satisfy the following
conditions:
(i) Both functions are strictly increasing, i.e.f (x) < f (y) andg(x) < g(y) for

all x,y ∈ S with x < y;
(ii) The inequality f (g(g(x))) < g( f (x)) holds for allx ∈ S.
Decide whether there exists a Spanish Couple
(a) on the setS = N of positive integers;
(b) on the setS = {a−1/b : a,b ∈ N}.
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4. A4 (AUT) For an integerm, denote byt(m) the unique number in{1,2,3}
such thatm+ t(m) is a multiple of 3. A functionf : Z → Z satisfiesf (−1) = 0,
f (0) = 1, f (1) = −1 and

f (2n + m) = f (2n − t(m))− f (m) for all integersm,n ≥ 0 with 2n > m.

Prove thatf (3p) ≥ 0 holds for all integersp ≥ 0.

5. A5 (SVK) Let a, b, c, d be positive real numbers such that

abcd = 1 and a + b + c + d >
a
b

+
b
c

+
c
d

+
d
a
.

Prove that

a + b + c + d <
b
a

+
c
b

+
d
c

+
a
d
.

6. A6 (LIT) Let f : R → N be a functions which satisfies

f

(

x +
1

f (y)

)

= f

(

y +
1

f (x)

)

, for all x,y ∈ R.

Prove that there is a positive integer which is not a value off .

7. A7 (GER) Prove that for any four positive real numbersa, b, c, d the inequality

(a−b)(a− c)
a + b + c

+
(b− c)(b−d)

b + c + d
+

(c−d)(c−a)

c + d + a
+

(d−a)(d−b)

d + a + b
≥ 0

holds. Determine all cases of equality.

8. C1 (NET) A box is a rectangle in the plane whose sides are parallel to the
coordinate axes and have positive lengths. Two boxesintersect if they have a
common point in their interior or on their boundary.
Find the largestn for which there existn boxesB1, . . . , Bn such thatBi andB j

intersect if and only ifi 6≡ j±1 (modn).

9. C2 (SER) For every positive integern determine the number of permutations
(a1, . . . ,an) of the set{1,2, . . . ,n} with the following property:

2(a1+ a2+ · · ·+ ak) is divisible byk for k = 1,2, . . . ,n.

10. C3 (PER) Consider the setS of all points with integer coordinates in the coor-
dinate plane. For a positive integerk, two distinct pointsA, B ∈ S will be called
k-friends if there is a pointC ∈ S such that the area of the triangleABC is equal
to k. A setT ⊆ S will be called ak-clique if every two points inT arek-friends.
Find the least positive integerk for which there exists ak-clique with more than
200 elements.

11. C4 (FRA) IMO5 Let n andk be positive integers withk ≥ n andk− n an even
number. Let 2n lamps labelled 1, 2,. . . , 2n be given, each of which can be either
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on or off. Initially all the lamps are off. We consider sequence ofsteps: at each
step one of the lamps is switched (from on to off or from off to on).
Let N be the number of such sequences consisting ofk steps and resulting in the
state where lamps 1 throughn are all on, and lampsn +1 through 2n are all off.
Let M be the number of such sequences consisting ofk steps and resulting in the
state where lamps 1 throughn are all on, and lampsn +1 through 2n are all off,
but where none of the lampsn +1 through 2n is ever switched on.
Determine the ratioN/M.

12. C5 (RUS) Let S = {x1,x2, . . . ,xk+l} be ak + l-element set of real numbers
contained in the interval[0,1]; k andl are positive integers. Ak-element subset
A ⊆ S is callednice if

∣
∣
∣
∣
∣
∣

1
k ∑

xi∈A

xi −
1
l ∑

x j∈S\A

x j

∣
∣
∣
∣
∣
∣

≤ k + l
2kl

.

Prove that the number of nice subsets is at least2
k+l ·

(k+l
k

)
.

13. C6 (NET) For n ≥ 2, letS1, S2, . . . , S2n be 2n subsets ofA = {1,2,3, . . . ,2n+1}
that satisfy the following property: There do not exist indecesa andb with a < b
and elementsx,y,z ∈ A with x < y < z such thaty,z ∈ Sa andx,z ∈ Sb. Prove that
at least one of the setsS1, S2, . . . , S2n contains no more than 4n elements.

14. G1 (RUS) IMO1 An acute-angled triangleABC has orthocenterH. The circle
passing throughH with center the midpoint ofBC intersects the lineBC at A1

andA2. Similarly, the circle passing throughH with center the midpoint ofCA
intersects the lineCA atB1 andB2, and the circle passing throughH with center
the midpoint ofAB intersects the lineAB atC1 andC2. Show thatA1, A2, B1, B2,
C1, C2 lie on a circle.

15. G2 (LUX) Given a trapeziodABCD with parallel sidesAB andCD, assume that
there exist pointsE on lineBC outside the segmentBC, andF inside the segment
AD, such that∠DAE = ∠CBF. Denote byI the intersection point ofCD and
EF , and byJ the intersection point ofAB andEF. Let K be the midpoint of the
segmentEF . AssumeK does not line on the linesAB andCD.
Prove thatI belongs to the circumcircle of△ABK if and only if K belongs to the
circumcircle of△CDJ.

16. G3 (PER) Let ABCD be a convex quadrilateral and letP andQ be the points
such thatPQDA andQPBC are cyclic quadrilaterals. Suppose that there exists a
pointE on the line segmentPQ such that∠PAE = ∠QDE and∠PBE = ∠QCE.
Show that the quadrilateralABCD is cyclic.

17. G4 (IRN) Let BE andCF be the altitudes in an acute triangleABC. Two circles
passing through the pointsA andF are tangent to the lineBC at the pointsP and
Q so thatB lies betweenC andQ. Prove that the linesPE andQF intersect on
the circumcircle of△AEF.
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18. G5 (NET) Let k andn be integers with 0≤ k ≤ n−2. Consider a setL of n lines
in the plane such that no two of them are parallel and no three have a common
point. Denote byI the set of intersection points of lines inL. Let O be a point in
the plane not lying on any line ofL.
A point X ∈ I is colored in red if the open line segment(OX) intersects at most
k lines fromL. Prove thatI contains at least12(k +1)(k +2) red points.

19. G6 (SER) Let ABCD be a convex quadrilateral. Prove that there exists a point
P inside the quadrilateral such that

∠PAB +∠PDC = ∠PBC +∠PAD = ∠PCD+∠PBA = ∠PDA +∠PCB = 90◦

if and only if the diagonalsAC andBD are perpendicular.

20. G7 (RUS) IMO6 Let ABCD be a convex quadrilateral with|BA| 6= |BC|. Denote
the incircles of trianglesABC andADC by ω1 andω2 respectively. Suppose that
there exists a circleω tangent to the rayBA beyondA and to the rayBC beyond
C, which is also tangent to the linesAD andCD. Prove that the common external
tangents ofω1 andω2 intersect onω .

21. N1 (AUS) Let n be a positive integer and letp be a prime number. Prove that if
a, b, c are integers (not necessarily positive) satisfying the equations

an + pb = bn + pc = cn + pa,

thena = b = c.

22. N2 (IRN) Let a1, a2, . . . , an be distinct positive integers,n ≥ 3. Prove that there
exist distinct indecesi and j such thatai +a j does not divide any of the numbers
3a1, 3a2, . . . , 3an.

23. N3 (IRN) Let a0, a1, a2 be a sequence of positive integers such that the greatest
common divisor of any two consecutive terms is greater than the preceding term,
i.e. (ai,ai+1) > ai−1 for all i ≥ 1. Prove thatan ≥ 2n for all n ≥ 0.

24. N4 (SER) Let n be a positive integer. Show that the numbers
(

2n −1
0

)

,

(
2n −1

1

)

,

(
2n −1

2

)

, . . . ,

(
2n −1

2n−1−1

)

are congruent modulo 2n to 1, 3, 5,. . . , 2n −1 in some order.

25. N5 (FRA) For everyn ∈ N let d(n) denote the number of (positive) divisors of
n. Find all functionsf : N → N with the following properties:
(i) d( f (x)) = x for all x ∈ N;
(ii) f (xy) divides(x−1)yxy−1 f (x) for all x,y ∈ N.

26. N6 (LIT) IMO3 Prove that there exist infinitely many positive integersn such that
n2 +1 has a prime divisor which is greater than 2n +

√
2n.
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2.1 Solutions to the Shortlisted Problems of IMO 2008

1. Forx = y = z = w the functional equation givesf (x)2 = f (x2) for all x ∈ R+. In
particular,f (1) = 1. Setting

√
w,

√
x,
√

y,
√

z in the equation yields

f (w)+ f (x)
f (y)+ f (z)

=
w+ x
y + z

, wheneverwx = yz.

Choosingz = 1 we getw = y/x and f (y/x)+ f (x) =
( y

x + x
)
· f (y)+1

y+1 . Now if we

placey = x2 we get f (x) = x · f (x)2+1
x2+1

which is equivalent to( f (x)− x)( f (x)−
1
x ) = 0. Assume that there arex,w ∈ R+ \{1} such thatf (x) = x and f (w) = 1

w .
Choosingy = z =

√
wx and placing in the equation implies1w + x = (w + x) ·

f (
√

wx)√
wx . If f (

√
wx) =

√
wx then we havew = 1. Otherwise, iff (

√
wx) = 1/

√
wx

we getx = 1, contrary to our assumption. Therefore we either havef (x) = x for
all x ∈ R+ or f (x) = 1

x for all x ∈ R+. It is easy to verify that both functions
satisfy the original equation.

2. (a) Substitutinga = x
x−1, b = y

y−1, c = z
z−1 the inequality becomes equivalent to

a2 +b2 + c2 ≥ 1 while the constraint becomesa+b+ c = ab+bc+ ca+1.
The last equation is equivalent to 2(a + b + c) = (a + b + c)2− (a2 + b2 +
c2) + 2 = (a + b + c)2 + 1− [(a2 + b2 + c2)− 1], or [(a + b + c)− 1]2 =
(a2 + b2+ c2)−1 which immediately implies thata2 + b2+ c2 ≥ 1.

(b) The equality holds if and only ifa + b + c = 1 anda + b + c = ab + bc +
ca+1. Expressingc = 1−a−b yields−ab+a+b−a2−b2 = 0. It suffices
to prove that there are infinitely many rational numbersa for which the
quadratic equationb2−(a−1)b−a(a−1)= 0 has a rational solutionb. The
last quadratic equation has a rational solution if and only if its discriminant
(a−1)2−4a(a−1) = (1−a)(1+3a) is a square of a rational number. We

want to find infinitely many rational numbersp
q such that

(

1− p
q

)(

1+3 p
q

)

is a square of a rational number, which is equivalent to(q− p)(q + 3p)
being a square of an integer. However, for eachm,n ∈ N the systemq− p =
(2m+1)2 andq +3p = (2n +1)2 has a solutionp = n2 + n−m2−m, q =
n2 + n +3m2+3m+1. Keepingm fixed, and increasingn would guarantee
that we are getting infinitely many different fractionsa = p

q .

3. (a) Assume that( f ,g) is a Spanish Couple onN. If g(a) > g(b) then a > b
(a ≤ b would yieldg(a) ≤ g(b)). Let us introduce the notation

gk(x) = g(g(· · ·g
︸ ︷︷ ︸

k

(x) · · · )).

If we assume thatg(x) < x for somex ∈ N we getg(g(x)) < g(x) < x, and
by induction(gk(x))∞

k=1 is infinite decreasing sequence fromN which is im-
possible. Henceg(x) ≥ x for all x ∈ N. The same holds forf . If for some
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x ∈ N we hadf (x) ≤ g(x), theng( f (x)) ≤ g(g(x)) ≤ f (g(g(x)) which con-
tradicts (ii). Thereforef (x) > g(x) for all x∈N. Fromg( f (x)) > f (g2(x)) >
g(g2(x)) we conclude thatf (x) > g2(x) and now easy induction implies
f (x) > gn(x) for all n ∈ N. This is impossible if(gn(x))∞

n=1 is infinite in-
creasing sequence. Henceg(x) = x for all x. This can’t be true either because
of (ii). This proves that there is no Spanish Couple onN.

(b) The functionsf
(
a− 1

b

)
= 3a− 1

b and g(a,b) = a− 1
a+b form a Spanish

Couple on the given setS.

4. Using the given properties we getf (2) = f (20 + 0) = f (20 −3)− f (0) = −1,
f (3) = f (2+ 1) = f (2−2)− f (1) = 2, f (4) = −2. For everyi ∈ {1,2,3} we
have f (2n − i) = f (2n−1 + 2n−1− i) = f (2n−1 − t(2n−1− i))− f (2n−1 − i). If
2 | n then 2n−1− i ≡ 2− i ≡−(i+1) (mod 3), and if 2∤ n then 2n−1− i ≡−(i−
1) (mod 3). Denoteai

k = f (22k − i) andbi
k = f (22k+1 − i). From the previous

calculation we getai
k = bi+1

k−1−bi
k−1 andbi

k = ai−1
k −ai

k. This further implies that
ai

k = 2ai
k−1−ai−1

k−1−ai+1
k−1. By induction we now obtaina1

k = 2 ·3k−1, a2
k = a3

k =

−3k−1. This further givesb1
k = a3

k − a1
k = −3k, b2

k = 3k, b3
k = 0. Moreover, for

eachn∈N and eachi∈ {1,2,3}: f (2n− i) > 0 if and only if 3| 2n− i. If 3 | 2n− i
then f (2n − i)≥ 3n/2. In addition,| f (2n − i)| ≤ 2 ·3(n−2)/2.
Assume thatp ≥ 1 is an integer. Letα1, . . . ,αl be positive integers such that
3p = 2α1 + · · ·+2αl . In order to provef (3p) ≥ 0 let us start with

f (3p) = f (2α1 − t (2α2 + · · ·+2αl))− f (2α2 − t (2α3 + · · ·+2αl))

+ f (2α3 + · · ·+2αl) .

Sincex+y≡ x− t(y) (mod 3) the first term on the RHS is≥ 3α1/2 while f (2α2 −
t(2α3 + · · ·+2αl)) ≤ 0. It suffices to establishf (2α3 + · · ·+2αl ) ≤ 3α1/2. Let us
prove the following:| f (m)| ≤ 3n/2 for all m, n with m < 2n.
The last statement is true forn = 1,2. Assume that the statement holds for some
n and assume thatm < 2n+1. If m < 2n we are done. Otherwise, letm = 2n + j,
for some 0≤ j < 2n. | f (m)| = | f (2n − t( j))− f ( j)| ≤ | f (2n − t( j)|+ | f ( j)|.
Since| f (2n − t( j))| ≤ 2 ·3(n−2)/2 and| f ( j)| ≤ 3n/2 we get| f (m)| ≤ 3(n+1)/2.

5. Using the inequality between arithmetic and geometric mean we get:

3

(
a
b

+
b
c

+
c
d

+
d
a

)

+

(
b
a

+
c
b

+
d
c

+
a
d

)

=

(

2
a
b

+
b
c

+
a
d

)

+

(

2
b
c

+
c
d

+
b
a

)

+

(

2
c
d

+
d
a

+
c
b

)

+

(

2
d
a

+
a
b

+
d
c

)

≥ 4
4

√

a3

bcd
+4

4

√

b3

cda
+4

4

√

c3

dab
+4

4

√

d3

abc
= 4(a + b + c + d)

> 3

(
a
b

+
b
c

+
c
d

+
d
a

)

+(a + b + c + d).

The required inequality now follows immediately.
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6. Assume the contrary, thatf is onto. There exists a sequence of numbersan such
that f (an) = n.
If f (u) = f (v) then f (u+1/n)= f (an +1/ f (u))= f (an +1/ f (v)) = f (v+1/n)
for all n ∈ N and by inductionf (u + m/n) = f (v + m/n) for all m,n ∈ N.
Applying this tou = a1, v = a1 + 1/ f (a1− 1), andn = f (a1 −1) we get 1=
f (a1) = f (a1 +1/n) = f (a1 +2/n) = · · · = f (a1 +1). This further implies that
f (a1 + q +1) = f (a1 + q) for all rational numbersq.
For fixedy we have

Γ (y) =

{

f

(

y +
1
n

)

: n ∈ N

}

=

{

f

(

y +
1

f (x)

)

: x ∈ R

}

=

{

f

(

x +
1

f (y)

)

: x ∈ R

}

= N.

Particularly,Γ (a1) = N so we could assume thata2,a3, . . . are chosen from
Γ (a1). Hence for eachn ≥ 2 there existskn ∈ N such thatan = a1 + 1/kn.
Now we havef (a1 + 1/n) = f (a1 + 1/ f (an)) = f (an + 1) = f (a1 + 1

kn
+ 1) =

f (a1 +1/kn) = f (an) = n.
SinceΓ (a1 + 1

3) = N there existsd such thatf (a1 + 1
3 + 1

d ) = 1. Assume that
1
3 + 1

d = p
q for relatively prime numbersp andq. Since1

3 + 1
d 6= 1 we haveq > 1.

Let k be an integer such thatkp ≡ 1 (modq). Then 1= f (a1 + p/q) = f (a1 +
kp/q) = f (a1 +1/q) = q which is a contradiction.

7. The left-hand side can be rewritten as

L =
(a− c)2

a + b + c
+

(b−d)2

b + c + d
+

(a− c)(b−d) ·
(

2d + b
(b + c + d)(d + a + b)

− 2c + a
(a + b + c)(c + d+ a)

)

.

In order to prove thatL ≥ 0 it suffices to establish the following inequality:

(a− c)(b−d)

(
2d + b

(b + c + d)(d + a + b)
− 2c + a

(a + b + c)(c + d+ a)

)

≥ −2|(a− c)(b−d)|√
a + b + c ·

√
b + c + d

.

If a = c or b = d the inequality is obvious. Assume thata > c andb > d. Our
goal is to prove that
∣
∣
∣
∣

2d + b
(b + c + d)(d + a + b)

− 2c + a
(a + b + c)(c + d+ a)

∣
∣
∣
∣
≤ 2√

a + b + c ·
√

b + c + d
.

Both fractions on the left-hand side are positive, hence it is enough to prove
that each of them is smaller than the right-hand side. These two inequalities
are analogous, so let us prove the first one. After squaring both sides, cross-
multiplying, and subtracting we get:
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−(2d + b)2(a + b + c)+4(d+ a + b)2(b + c + d)

= −(2d + b)2(a + b + c)+ [(2d+ b)+ (2a + b)]2(b + c + d)

= −(2d + b)2 ·a +(2d + b)2 ·d +(2a + b)2(b + c + d)+

2 · (2d + b)(2a + b)(b + c +d)

> −(2d + b)2 ·a +(2d + b)(2a + b)(2b +2c +2d)

> −(2d + b)2 ·a +(2d + b)2(2a + b) > 0.

The equality holds if and only ifa = c andb = d.

8. The largest suchn is equal to 6. Six
boxes can be placed in a plane as
shown in the picture.
Let us now prove thatn≤ 6. Denote by
Xi andYi the projections of the boxBi

to the linesOx andOy respectively. If
i 6≡ j±1 (modn) thenXi ∩X j 6= /0 and
Yi ∩Yj 6= /0. If i ≡ j ± 1 (modn) then
Xi ∩X j = /0 orYi ∩Yj = /0.

B1 B2

B3

B4

B5

B6

We will now prove that there are at most 3 values fori such thatXi ∩Xi+1 = /0.
Assume thatX1 = [a1,b1], . . . , Xn = [an,bn]. Without loss of generality we may
assume thata1 = max{a1,a2, . . . ,an}. If bi < a1 for somei ∈ {2,3, . . . ,n} then
Xi ∩X1 = /0 hencei ∈ {2,n}. Thereforea1 ∈ X3 ∩X4∩ ·· · ∩Xn−1 andX2 ∩X3,
Xn ∩Xn−1, X1 ∩X2, andX1 ∩Xn are the only possible intersections that could
be empty. We will prove that not all of these sets can be empty.Assume the
contrary. Thena3 ∈ (b2,a1), bn ∈ (a3,a1), andan−1 ∈ (bn,a1). This implies that
an−1 > b2 andXn−1∩X2 = /0, a contradiction.
In the similar way we prove that at most three of the intersectionsY1∩Y2, . . . ,
Yn ∩Y1 are empty. However there aren empty sets among the intersectionsX1∩
X2, X2∩X3, . . . , Xn ∩X1, Y1∩Y2, Y2∩Y3, . . . , Yn ∩Y1 yieldingn ≤ 3+3= 6.

9. Let us call a permutationnice if it satisfies the stated property. We want to cal-
culate the numberxn of nice permutations. Forn = 1,2,3 every permutation is
nice hencexn = n! for n ≤ 3.
Assume now thatn ≥ 4. From(n−1) | 2(a1 + · · ·+ an−1) = 2[(1+ · · ·+ n)−
an] = n(n + 1)− 2an = (n + 2)(n− 1)− 2(an − 1) we conclude that(n− 1) |
2(an −1). If n is even we immediately conclude thatan = n or an = 1.
Let us prove thatan ∈ {1,n} for odd n. Assume the contrary. Thenn− 1 =
2(an − 1), i.e. an = n+1

2 . Thenn − 2 | 2(a1 + · · ·+ an−2) = n(n + 1)− 2an −
2an−1 = n(n + 1)− (n + 1)−2an−1 = (n− 2)(n + 2)+ 3− 2an−1 which gives
n−2 | 2an−1−3. Since2an−1−3

n−2 ≤ 2n−3
n−2 = 1+ 1

n−2 < 2 we getn−2= 2an−1−3.

This implies thatan−1 = n+1
2 = an which is a contradiction.

Therefore, forn ≥ 4 we must havean ∈ {1,n}. There arexn−1 nice permuta-
tions foran = n, and foran = 1, the problem reduces to counting the nice per-
mutations of the set{2,3, . . . ,n} satisfying the given property. However, since
2(a1+ · · ·+ak) = 2k+2((a1−1)+ · · ·(ak−1)) we getk | 2(a1+ · · ·+ak) if and
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only if k | 2[(a1−1)+ · · ·+(ak −1)]. This provides a bijection between the nice
permutations of{2,3, . . . ,n} and the nice permutations of{1,2, . . . ,n−1}. Thus
we havexn = 2xn−1 for n ≥ 4, which impliesxn = 2n−3 · x3 = 6 ·2n−3 for n ≥ 4.

10. Since the area of a triangleABC is equal to1
2|
−→
AB×−→

AC| we have that(0,0) and
(a,b) arek-friends if and only if there exists a point(x,y) such thatay− bx =
±2k. According to the Euclid’s algorithm such integersx and y will exist if
and only if gcd(a,b) | 2k. Similarly (a,b) and(c,d) arek-friends if and only if
gcd(c−a,d−b) | 2k.
Assume that there exists ak-cliqueS of sizen2 + 1 for somen ≥ 1. Then there
are two elements(a,b), (c,d) ∈ S such thata ≡ c (modn) andb ≡ d (modn).
This impliesn | gcd(a− c,b−d) | 2k, or equivalently,n | 2k.
Therefore, for ak-clique of size 200 to exist, we must haven | 2k for all n ∈
{1,2, . . . ,14}. Thereforek ≥ 4 ·9 ·5 ·7 ·11·13= 180180.
It is easy to see that all lattice points from the square[0,14]2 are 180180-friends.

11. The number of sequences in which the lampi is switched (on or off) exactlyαi

times (i = 1,2, . . . ,2n) is equal to k!
α1!·α2!···α2n! . Therefore

M = k! ·∑
{

1
α1! · · ·αn!

: α1 + · · ·+ αn = k,2 ∤ α1, . . . ,2 ∤ αn

}

. (1)

Similarly we get

N = k! ·∑ 1
α1! · · ·αn! ·β1! · · ·βn!

,

where the summation is over all possibleα1, . . . ,αn, β1, . . . ,βn that satisfyα1 +
· · ·+ αn + β1 + · · ·+ βn = k, 2 ∤ α1, . . . , 2 ∤ αn, 2 | β1, . . . , 2 | βn. We see that the
sum in (1) is equal to the coefficient ofX k in the expansion

f (X) =

(

X +
X3

3!
+

X5

5!
+ · · ·

)n

= sinhn(X)

while the sum in (2) is equal to the coefficient ofX k in the expansion

g(X) =

(

X +
X3

3!
+

X5

5!
+ · · ·

)n

·
(

1+
X2

2!
+

X4

4!
+ · · ·

)n

= sinhn(X) ·coshn(X) =
1
2n sinhn(2X).

Assume that sinhn(X) = ∑∞
i=0aiX i for some real numbersa1, a2, . . . . Then we

have sinhn(2X) = ∑∞
i=0 ai(2X)i = ∑∞

i=0 ai ·2i ·X i. Therefore

N
M

=
k! ·ak

1
2n · k! ·ak ·2k

= 2n−k.

12. Letm be the average of all elements fromS, i.e. m = 1
k+l (x1 + x2 + · · ·+ xk+l).

DenoteΓ (A) = 1
k ∑x∈A x. SetA is nice if and only if|Γ (A)−m| ≤ 1

2k . For each
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permutationπ = (π1, . . . ,πk+l) of S consider the setsAπ
1 , Aπ

2 , . . . , Aπ
k+l defined

asAπ
i = {πi,πi+1, . . . ,πi+k−1} (indeces are modulok + l). We will prove that at

least two of the setsAπ
i are nice. Let us paint the setsAπ

i in red and green in
the following way:Aπ

i is green if and only ifΓ (Aπ
i ) ≥ m. Notice thatΓ (Aπ

i )−
Γ (Aπ

i+1) = 1
k (πi −πi+k) is of absolute value≤ 1

k . Therefore|Γ (Aπ
i )−m| ≤ 1

2k
or |Γ (Aπ

i+1)−m| ≤ 1
2k . Hence whenever two consecutive sets in the sequence

Aπ
1 , . . . ,Aπ

k+l are of different colors one of them must be nice. If there are≥ 2
sets of each of the colors, it is obvious that at least two of the sets will be nice.
Assume that there is only one red set and that it is the only nice set. Without
loss of generality assume thatAπ

1 is red. Thenm(k+ l) = Γ (Aπ
1)+Γ (Aπ

2)+ · · ·+
Γ (Aπ

k+l) > (m− 1
2k )+m+ 1

2k + · · ·+m+ 1
2k ≥ (k+ l)m which is a contradiction.

Now we can prove the required statement. To each of(k + l)! permutations ofS
we assign at least two nice sets. Each set is counted(k + l) · k! · l! times so there

are at least2(k+l)!
k+l · 1

k!·l! nice sets.

13. We will prove a stronger result, that for eachk we have

k

∑
i=1

(|Si|− (n +1))≤ (2n +1) ·2n−1. (1)

The desired statement follows from (1) because if|Si| ≥ 2n + 2 for eachi then
(2n +1) ·2n−1 ≥ 2n · (n +1) which is impossible.
We will use induction onn to prove (1). First, forn = 1 and any subsets
S1,S2, . . . ,Sk of {1,2,3,4} we want to prove|S1|+ · · ·+ |Sk| ≤ 20 ·3+k(1+1)=
3+2k. It suffices to verify this only when|Si| ≥ 3 for eachi. If there is one set
with four elements, thenk = 1 and the inequality is satisfied. If all sets have
cardinality 3, thenk ≤ 3 ({1,3,4} and{2,3,4} can’t be both among the chosen
sets), hence 3k ≤ 6+2k.
Assume now that the statement is true forn − 1. Let us divide the subsets
S1, . . . ,Sk of {1,2, . . . ,2n+1} in two families:A = {A1, . . . ,Al} – those with all
elements greater than 2n, andB = {B1, . . . ,Bk−l} – the remaining subsets. Using
the inductional hypothesis we obtain∑l

i=1(|Ai|− (n + 1))≤ (2n−1) ·2n−2− l.
Let us denote byαi the smallest element ofBi ∩{2n + 1, . . . ,2n+1} if it exists.
Let Hi = Bi ∩ {1, . . . ,2n} andGi = Bi ∩ {2n + 1, . . . ,2n+1} \ {αi}. If i < j we
claim thatGi ∩G j = /0. If not, consideringz ∈ Gi ∩G j and takingy = αi, x ∈ H j

we get a contradiction sincex < y < z andx,z ∈ B j, y,z ∈ Bi.
SetsGi are disjoint, and the inductional hypothesis holds for setsHi, hence
∑k−l

i=1(|Bi|− (n +1)) = ∑k−l
i=1(|Hi|−n)+ ∑k−l

i=1 |Gi| ≤ (2n−1)2n−2+2n. Thus

k

∑
i=1

(|Si|− (n +1)) ≤ (2n−1) ·2n−2 ·2− l +2n ≤ (2n +1)2n−1.

14. Let A′, B′, C′ be the midpoints ofBC, CA, AB, respectively, andA′′, B′′, C′′

be the midpoints ofHA, HB, HC respectively. LetO be the circumcenter of
△ABC andR its circumradius. Pythagoras theorem impliesOA2

1 = OA′2+A′A2
1 =
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OA′2 + A′H2. SinceHA′OA′′ is a parallelogram we have thatOA′2 + A′H2 =
1
2(OH2+A′A′′2). However, sinceA′′A′OA is a parallelogram we have thatA′A′′ =
OA = R. ThusOA2

1 = 1
2(R2 + OH2). Similar relations forOA2, OB1, OB2, OC1,

OC2 imply that the pointsA1, A2, B1, B2, C1, C2 lie on a circle with centerO.

15. Assume that the distribution of the points is such thatABEF is a convex quadri-
lateral andC belongs to the segmentBE (other cases are analogous).
Let JF = p, FI = q, IK = r. Then
KE = q+r. Let us further denoteDI =
s, IC = t, JA = x, AB = y. SinceABEF
is cyclic we haveJA · JB = JF · JE,
i.e. x(x + y) = p(p + 2q + 2r). From
CD‖JB we have s

x = q
p and t

x+y =
q+2r

p+2q+2r . The last three equalities im-
ply thatst = q(q +2r). J A B

F

E

D CI
K

x y

s t

p
q

q+ r

r

The quadrilateralABKI is cyclic if and only if x(x + y) = (p + q)(p + q + r).
JCKD is cyclic if and only if(p + q)r = st. We want to prove that

x(x + y) = (p + q)(p + q + r) ⇔ (p + q)r = st.

Using the equalities we already have, we can eliminatex, x+y, s, andt from the
previous equivalence. Hence it suffices to prove that:

[
p(p +2q +2r)

(p + q)(p + q + r)
= 1 ⇔ (p + q)r

q(q +2r)
= 1

]

⇔ [p(p +2q +2r)= (p + q)(p + q + r) ⇔ (p + q)r = q(q +2r)].

The last equivalence becomes obvious once we multiply all the terms.

16. Let us first consider the caseEQ 6= EP. Assume thatEQ < EP and denote
by A′ andD′ the intersections ofEA andED with the circumcircle ofAPQD.
Then∠PAA′ =∠PAD′+∠D′AA′ = ∠PAD′+∠D′DA′ while∠QDD′ =∠QDA′+
∠A′DD′ hence∠QDA′ = ∠PAD′. This means thatA′Q = PD′ and A′D′‖QP.
Therefore∠DEQ = ∠DD′A′ = ∠DAA′ henceQE is a tangent to the circumcir-
cle of△DAE. Let M be the intersection ofAD andPQ . ThenME2 = MD ·MA.
SinceAPQD is cyclic we have thatMD ·MA = MQ ·MP henceME2 = MQ ·MP.
Assume thatBC intersectsPQ at a pointN. ThenNE2 = NQ ·NP, and since there
is the unique pointX on the linePQ for whichXE2 = XQ ·XP we conclude that
M ≡ N. Now fromMD ·MA = ME2 = MC ·MB we get thatABCD is cyclic.
If EQ = EP then it is easy to prove that the perpendicular bisectors ofAD, BC,
PQ coincide henceABCD is an isosceles trapezoid hence it is cyclic.

17. LetM be the intersection point ofQF andPE. We need to prove that∠QMP =
∠BAC. Since∠MQP = ∠QAB (QB is a tangent to the circle around△QFA)
it is enough to prove that∠QAB +∠BAC = ∠QMP +∠MQP, or, equivalently
∠QAE = ∠EPC. Therefore we need to prove thatAQPE is a cyclic quadrilateral.
From BQ2 = BF ·BA = BP2 we getBP = BQ. Adding BF ·BA = BP2 to AF ·
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AB = AE ·AC (which holds sinceBCEF is cyclic) we getAB2 = AE ·AC+BP2.
From Pythagoras theorem we haveAB2 = AE2 + BE2 = AE2 + BC2−CE2 we
getBC2−CE2 = AE ·EC+BP2. This implies thatBC2−BP2 = CE2+AE ·EC,
or equivalently

CE · (CE + AE) = (BC + BP)(BC−BP) = CQ ·CP.

ThusCE ·CA = CP ·CQ andQPEA is cyclic.

18. We will use the induction onk. The statement is valid fork = 0 as there is at
least one pointP for which (OP) doesn’t intersect any of the lines fromL.
Assume that the statement holds fork−1. Consider the pointO and the line (or
one of the lines if there are more) whose distance fromO is the smallest. Denote
this line byl. That line containsn−1 points fromI. We will first prove that there
are at leastk + 1 red points onl. We start by noticing that there exists a point
P ∈ l ∩ I such that(OP) doesn’t intersect any of the lines fromL. P divides the
line l in two rays – assume that one of them contains the pointsP1,P2, . . . ,Pu ∈ I,
while the other ray contains the pointsQ1, . . . ,Qn−2−u ∈ I. Assume thatPis are
sorted according to their distance fromP, and the same holds forQis. Consider
the open segments(OPi) and(OPi+1). Each line not containing any ofPi andPi+1

must intersect either both or none of these segments. The line passing throughPi

(other thanl) could intersect(OPi+1) and similar fact holds for the line passing
throughPi+1. Hence the number of intersections of(OPi) and(OPi+1) with lines
from L differ by at most 1. ThereforeP1, P2, . . . , Pmin{k,u} are all red. Similar
holds forQis hence there are at leastk +1 red points onl.
If we removel together withn−1 points on it, the remaining configuration al-
lows us to apply the inductional hypothesis. There are at least 1

2k · (k +1) points
G from I \{l} for which(OG) intersects at mostk−1 lines fromL\{l}. There-
fore there are at least1

2k · (k +1)+ k +1= 1
2(k +1)(k +2) red points.

19. Assume first that there exists a pointP insideABCD with the described property.
Let K, L, M, N be the feet of perpendiculars fromP to AB, BC, CD, andDA
respectively. We have∠KNM = ∠KNP+∠PNM = ∠KAP+∠PDM = 90◦ and
similarly ∠NKL = ∠KLM = ∠LMN = 90◦ henceKLMN is a rectangle. Denote
by W , X , Y , Z the feet of perpendiculars fromP to KL, LM, MN, and NK.
From△PLX ∼△PCM we get thatCM = XL

PX ·PM = PM · PW
PX . Similarly DM =

PM · PZ
PY , CL = PL · PY

PX , BL = PL · PZ
PW . Notice that

CM : DM =
PW ·PY
PZ ·PX

= CL : BL

henceBD‖ML. Similarly AC‖LK henceAC ⊥ BD.
Conversely, assume thatABCD is a convex quadrilateral for whichAC ⊥ BD. Let
P′ be any point in the plane and consider a triangleM′P′L′ for which M′L′‖BD,
P′M′ ⊥ CD, and P′L′ ⊥ CB. Let K′ be the point for whichP′K′ ⊥ AB and
K′L′‖AC. LetN′ be the point such thatK′L′M′N′ is a rectangle. Consider the four
linesαk, αl , αm, αn throughK′, L′, M′, N′ perpendicular toP′K′, P′L′, P′M′, and
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P′N′ respectively. LetA′ = αk∩αn, B′ = αk∩αl ,C′ = αl ∩αm, andD′ = αm∩αn.
Using the previously established result we have:A′C′‖K′L′ andB′D′‖M′L′. We
also haveC′D′‖CD, B′C′‖BC, A′B′‖AB hence△DCB ∼△D′C′B′ and△ABC ∼
△A′B′C′. Thus there exists a homothety that takesA′B′C′D′ to ABCD and this
homothethy will mapP′ into the pointP with the required properties.

20. Let M, N, P, Q be the points of tan-
gency of ω with AB, BC, CD, and
DA, respectively. We have thatAB +
AD = AB + AQ − QD = AB + AM −
DP = BM −CP + CD = BN −CN +
CD = BC + CD. Denote byX andY
the points of tangency ofω1 and ω2

with AC. Then we haveAB = AX +
BC −CX and AD = AY + CD −CY . M B

N

D

P

Q

A

C

X
Y

Z
Y ′

X ′

Together withAB + AD = BC +CD this yields toAX −CX = CY −AY . Since
AX +CX =CY +AY we conclude thatAX =CY henceY is the point of tangency
of AC and the excircleωB of △ABC that corresponds toB. Similarly, the excircle
ωD corresponding toD of △ADC passes throughX .
Consider the homothety that mapsωB to ω . Denote byZ the image ofY under
this homothety.Z belongs to the tangent ofω that is parallel toAC. ThereforeZ is
the image ofX under the homothety with centerD that mapsωD to ω . Denote by
X ′ andY ′ the intersections ofDX andBY with ω2 andω1 respectively. Circles
ω1 andωB are homothetic with centerB, henceY ′ the image ofY under this
homothety. Moreover,Y ′ belongs to the tangent ofω1 that is parallel toAC. This
implies thatXY ′ is a diameter ofω1. Similarly, X ′Y is a diameter ofω2. This
implies thatX ′Y‖XY ′ which means that△ZX ′Y ∼△ZXY ′ andZ is the center of
homothety that mapsω2 to ω1. This finishes the proof of the required statement.

21. Assume the contrary. If two of the numbers are the same then so are all three of
them. Let us therefore assume that all ofa, b, c are different. The given condi-
tions imply that

an −bn

a−b
· bn − cn

b− c
· cn −an

c−a
= −p3,

which immediately implies that some of the numbersa, b, c have to be negative.
Moreover,n can’t be odd since otherwise each of the fractions would be posi-
tive. Assume first thatp is odd. Since 2∤ an−bn

a−b = an−1 + an−2b + · · ·+ bn−1 the
numbersa andb have to be of different parity. Similarly, 2∤ b− c and 2∤ c− a
which is not possible.
We are left with the casep = 2. Writing n = 2m we derive(am + bm) · (bm +
cm) · (cm + am) · am−bm

a−b · bm−cm

b−c · cm−am

c−a = −8. This means thatam + bm = ±2,
am −bm = ±(a−b) and analogous equalities hold for the pairs(b,c) and(c,a).
If m is even then|a|= |b| = |c| = 1 which means that at least two ofa, b, c have
to be the same.
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If m is odd then±2 = am +bm is divisible bya+b. Sinceam +bm ≡ a+b (mod
2) we conclude thata + b = ±2. Similarlyb + c = ±2 andc + a = ±2. At least
two of a, b, c have to be the same which is a contradiction.
Remark. The statement of the problem remains valid if we replace the assump-
tion thatp is prime with the assumption 2| p or p = 2.

22. Assume the contrary. Without loss of generality we may assume that these num-
bers are relatively prime (otherwise we could divide them bytheir common divi-
sor). We may also assume thata1 < a2 < · · · < an. For eachi ∈ {1,2, . . . ,n−1}
there existsj ∈ {1,2, . . . ,n − 1} such thatan + ai | 3a j. This together with
an + ai > a j implies thatan + ai is divisible by 3 for alli.
There existsk ∈ {1,2} such thatan ≡ k (mod 3) andai ≡ 3− k (mod 3) for all
i 6= n. For eachi ∈ {1,2, . . . ,n−2} there existsj such thatan−1+ai | 3a j. Since
an−1 + ai is not divisible by 3 we must havean−1 + ai | a j hencej = n and we
conclude thatan−1 + ai | an for all i ∈ {1,2, . . . ,n−2}. Let l ∈ {1,2, . . . ,n} be
such an integer for whichan +an−1 | 3al . Adding the inequalitiesan +an−1≤ 3al

andan−1+ al ≤ an gives thatan−1 ≤ al thus eitherl = n or l = n−1.
In the first caseu(an−1 + an) = 3an for someu ∈ N. We immediately see that
u < 3 andu > 1. Henceu = 2 and 2an−1 = an. However, this is impossible since
for eachi ∈ {1,2, . . . ,n−2} the numberan−1 + ai dividesan = 2an−1.
On the other hand, ifan−1+an | 3an−1 then there existsv∈N for whichv(an−1+
an) = 3an−1. If v ≥ 2 then 2an−1 + 2an ≤ 3an−1 which is impossible. Hence
v = 1 and we getan = 2an−1. In the same way as in the previous case we get a
contradiction.

23. We will use the induction onn. Observe thatan ≥ (an+1,an) > an−1. Obviously,
a0 ≥ 1, anda1 ≥ a0+1≥ 2. Fromak+1−ak ≥ (ak+1,ak)≥ ak−1+1 we geta2 ≥
4 anda3 ≥ 7. It is impossible to havea3 = 7 since(a3,a2) > a1 = 2 would imply
a2 = 7 = a3. Hence we have that the statement is satisfied forn ∈ {0,1,2,3}.
Assume thatn ≥ 2 andai ≥ 2i for all i ∈ {0,1, . . . ,n}. We need to prove that
an+1 ≥ 2n+1. Let us denotedn = (an+1,an). We havedn > an−1. Let an+1 = kdn

andan = ldn. If k≥ 4 we are done becausean+1≥ 4dn > 4an−1≥ 4·2n−1 = 2n+1.
If l ≥ 3 thenan+1 > an impliesk ≥ 4. If l = 1 thenan+1 ≥ 2an ≥ 2n+1.
Hence the only remaining case to consider isan = 3dn, an−1 = 2dn. Obviously,
dn−1 = (2dn,an−1) > an−2. If an−1 = dn−1 then froman−1 < dn andan−1 | 2dn

we get 2dn
an−1

≥ 3 anddn ≥ 3
2an−1 ≥ 3

2 ·2n−1. Now an+1 = 3dn ≥ 9 ·2n−2 > 2n+1.

If an−1 ≥ 3dn−1 thendn > an−1 ≥ 3dn−1. Sincedn−1 = (2dn,an−1) there exists
s ∈ N such that 2dn = sdn−1. This implies thatdn > 3 · 2dn

s which meanss > 6,
or s ≥ 7. Therefore 2dn ≥ 7dn−1 > 7 ·2n−2 andan+1 = 3dn > 2n+1.
It remains to consider the casean−1 = 2dn−1. From(2dn,2dn−1) = dn−1 we con-
clude thatdn =

dn−1
2 w for some odd integerw ≥ 3. From an−1 < dn we get

2dn−1 < dn hencew ≥ 5. If w ≥ 7 thenan+1 ≥ 3 · 7 · dn−1
2 > 21· 2n−3 > 2n+1

hence it remains to consider the casew = 5. We now have 2n−3 ≤ an−3 <
dn−2 = (2dn−1,an−2). If an−2 ≥ 2dn−2 then 2dn−1 ≥ 3dn−2 > 3 · 2n−3. There-
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fore an+1 = 3 · 5dn−1
2 ≥ 45·2n−4 > 2n+1. If an−2 = dn−2 then froman−2 < dn−1

we get again 2dn−1 ≥ 3dn−2 andan+1 ≥ 2n+1.

24. First we prove that the numbers
(2n−1

k

)
are all odd. LetM be the largest integer

for whcich 2M divides(2n −1)!. ThenM = ∑n−1
i=1

[
2n−i − 1

2i

]
= ∑n−1

i=1

(
2n−i−1

)
.

The largest numberN for which 2N dividesk! · (2n −1− k)! satisfies

N =
n−1

∑
i=1

([
k
2i

]

+

[

2n−i − k +1
2i

])

.

Each summand on the right-hand side is equal to 2n−i −1 (write k = qi ·2i + ri,
for 0≤ ri < 2i). HenceM = N and

(2n−1
k

)
is odd.

Let us prove that
(2n−1

k

)
give different remainders modulo 2n. This is valid

for n = 1. Assume that this holds for somen > 1. We claim that the sets
Ai =

{(2n+1−1
2i

)
,
(2n+1−1

2i+1

)}

andBi =
{(2n−1

i

)
,2n+1−

(2n−1
i

)}

are the same mod-

ulo 2n+1 for eachi = 0,1, . . . ,2n−1−1. We also claim that that all numbers from
⋃2n−1−1

i=0 Bi are different modulo 2n+1. These two claims will imply the desired

result. Let us show that
(2n+1−1

2i

)
≡ −

(2n+1−1
2i+1

)
(mod 2n+1) and that one of these

two numbers is congruent to
(2n−1

i

)
. The first congruence follows from

(
2n+1−1

2i

)

=

(
2n+1

2i+1

)

−
(

2n+1−1
2i+1

)

=
2n+1

2i+1

(
2n+1−1

2i

)

−
(

2n+1−1
2i+1

)

≡ −
(

2n+1−1
2i+1

)

(mod 2n+1),

while the second is true because
(

2n+1−1
2i

)

=
i−1

∏
k=0

2n+1− (2k +1)

2k +1
·

i

∏
k=1

2n+1−2k
2k

=
[ i−1

2 ]

∏
k=0

2n+1− (2k +1)

2k +1
·

i

∏
k=1

2n − k
k

≡ (−1)i ·
(

2n −1
i

)

(mod 2n+1).

It remains to show that
⋃2n−1−1

i=0 Bi have all elements different modulo 2n+1.
Inductional hypothesis implies that

(2n−1
i

)
has different remainder than

(2n−1
j

)

for i 6= j. The same holds for 2n+1−
(2n−1

i

)
and 2n+1−

(2n−1
j

)
. From

(2n−1
2k

)
+

(2n−1
2k+1

)
≡ 2n we have that

(2n−1
i

)
≡ 2n+1−

(2n−1
j

)
≡ 0 (mod 2n+1) if and only if

there existsk such that{i, j} = {2k,2k + 1} for somek. However, in that case
(2n−1

i

)
+

(2n−1
j

)
= 2n

2k+1

(2n−1
2k

)
6≡ 0 (mod 2n+1).
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25. If p is a prime number, thend( f (p)) hasp divisors, and must be a power of a
prime. Hencef (p) = qp−1 for some prime numberq. Let us show thatq = p.
Consider first the casep > 2. From f (2p) | (2− 1) · p2p−1 · f (2) and f (2p) |
(p−1) ·22p−1 · f (p) = (p−1) ·22p−1 · qp−1 we conclude thatf (2p) | (p2p−1 ·
f (2),(p−1) ·22p−1 ·qp−1) = ( f (2),(p−1) ·22p−1 ·qp−1). Since f (2p) has 2p
divisors andf (2) is prime this is a contradiction. We also havef (2) = 2. Indeed,
this follows from f (6) | 36−1 · f (2), f (6) | 2 ·26−1 ·33−1, andd( f (6)) = 6.
Assume now thatx = pa1

1 · · · pan
n is a prime factorization ofx with p1 < · · · <

pn. Let f (x) = qb1
1 · · ·qbm

m . Fromd( f (x)) = pa1
1 · · · pa1

n = (b1 +1) · · ·(bm +1) we

conclude thatbi ≥ p1−1 for all i. The relationf (x) | (p1−1) ·(pa1−1
1 · · · pan

n )x−1 ·
f (p1) yields toq1, . . . ,qm ∈ {p1, . . . , pn}. Hence for each primep and eacha∈N
there isb ∈ N such thatf (pa) = pb. Frompa = b +1 we getf (pa) = ppa−1.
Now assume thatx ∈ N. There are integersa1, . . . ,an,b1, . . . ,bn such thatx =

pa1
1 · · · pan

n and f (x) = pb1
1 · · · pbn

n . For eachi ∈ {1, . . . ,n} we havef (x) | (pai
i −

1) ·(x/pai
i )x−1 · p

p
ai
i −1

i hencepbi
i | p

p
ai
i −1

i which impliesbi +1≤ pai
i . Multiplying

this for i = 1, . . . ,n we getd( f (x)) = (b1+1) · · ·(bn +1)≤ pa1
1 · · · pan

n = x. Since

d( f (x)) = x we must havebi = pai
i −1 for all i and f (x) = p

p
a1
1 −1

1 · · · ppan
n −1

n .
It is easy to verify that functionf defined by the previous relation satisfies the
required conditions.

26. If p is any prime number of the formp ≡ 1(mod 4) we know that
(
−1
p

)

= 1

and there are exactly two numbersn,m ∈ {0,1,2, . . . , p− 1} whose square is
congruent to−1 modulop. Since the sum of these two numbers is equal top,
one of them is smaller thanp/2. Assuming thatn < p/2 let us denotek = p−2n.
It suffices to prove that there exist infinitely many prime numbersp for which

k >
√

2n. From p | n2 + 1 = p2−2pk+k2

4 + 1 we conclude thatp | k2 + 4. This
implies thatk2 ≥ p−4. It suffices to prove thatp−4> 2n, i.e. 4< p−2n = k for
infinitely many values ofp. However, this will be satisfied sincek ≥√

p−4> 4
for p > 20, and there are infinitely many prime numbers greater than 20 that are
congruent to 1 modulo 4.





A

Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation ofset theory, algebra, logic,
geometry (including vectors), analysis, number theory (including divisibility and
congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement
of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B−C: indicates the relation ofbetweenness, i.e., thatB is be-
tween A and C (this automatically means thatA,B,C are different collinear
points).

◦ A = l1∩ l2: indicates thatA is the intersection point of the linesl1 andl2.

◦ AB: line throughA andB, segmentAB, length of segmentAB (depending on
context).

◦ [AB: ray starting inA and containingB.

◦ (AB: ray starting inA and containingB, but without the pointA.

◦ (AB): open intervalAB, set of points betweenA andB.

◦ [AB]: closed intervalAB, segmentAB, (AB)∪{A,B}.

◦ (AB]: semiopen intervalAB, closed atB and open atA, (AB)∪{B}.
The same bracket notation is applied to real numbers, e.g.,[a,b) = {x | a ≤ x <
b}.

◦ ABC: plane determined by pointsA,B,C, triangleABC (△ABC) (depending on
context).

◦ [AB,C: half-plane consisting of lineAB and all points in the plane on the same
side ofAB asC.

◦ (AB,C: [AB,C without the lineAB.
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◦ 〈−→a ,
−→
b 〉, −→a ·−→b : scalar product of−→a and

−→
b .

◦ a,b,c,α,β ,γ: the respective sides and angles of triangleABC (unless otherwise
indicated).

◦ k(O,r): circlek with centerO and radiusr.

◦ d(A, p): distance from pointA to line p.

◦ SA1A2...An , [A1A2 . . .An]: area ofn-gonA1A2 . . .An (special case forn = 3, SABC:
area of△ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (re-
spectively).

◦ Zn: the ring of residues modulon, n ∈ N.

◦ Zp: the field of residues modulop, p being prime.

◦ Z[x], R[x]: the rings of polynomials inx with integer and real coefficients respec-
tively.

◦ R∗: the set of nonzero elements of a ringR.

◦ R[α], R(α), whereα is a root of a quadratic polynomial inR[x]: {a+bα | a,b ∈
R}.

◦ X0: X ∪{0} for X such that 0/∈ X .

◦ X+, X−, aX +b, aX +bY : {x | x ∈ X ,x > 0}, {x | x ∈ X ,x < 0}, {ax+b | x ∈ X},
{ax + by | x ∈ X ,y ∈Y} (respectively) forX ,Y ⊆ R, a,b ∈ R.

◦ [x], ⌊x⌋: the greatest integer smaller than or equal tox.

◦ ⌈x⌉: the smallest integer greater than or equal tox.

The following is notation simultaneously used in differentconcepts (depending on
context).

◦ |AB|, |x|, |S|: the distance between two pointsAB, the absolute value of the num-
berx, the number of elements of the setS (respectively).

◦ (x,y), (m,n), (a,b): (ordered) pairx andy, the greatest common divisor of inte-
gersm andn, the open interval between real numbersa andb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible.
However, one nonstandard abbreviation stood out as particularly convenient:

◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).
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◦ LHS: left-hand side (of a given equation).

◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric
mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.





B

Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BLR Belarus
BRA Brazil
BUL Bulgaria
CAN Canada
CHN China
COL Colombia
CRO Croatia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GBR United Kingdom
GDR Germany, DR
GEO Georgia
GER Germany
GRE Greece

HKG Hong Kong
HUN Hungary
ICE Iceland
INA Indonesia
IND India
IRE Ireland
IRN Iran
ISR Israel
ITA Italy
JAP Japan
KAZ Kazakhstan
KOR Korea, South
KUW Kuwait
LAT Latvia
LIT Lithuania
LUX Luxembourg
MCD Macedonia
MEX Mexico
MON Mongolia
MOR Morocco
NET Netherlands
NOR Norway
NZL New Zealand
PER Peru
PHI Philippines

POL Poland
POR Portugal
PRK Korea, North
PUR Puerto Rico
ROM Romania
RUS Russia
SAF South Africa
SER Serbia
SIN Singapore
SLO Slovenia
SMN Serbia and Montenegro
SPA Spain
SVK Slovakia
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
USA United States
USS Soviet Union
UZB Uzbekistan
VIE Vietnam
YUG Yugoslavia


