Log In
Register
IMOmath
Olympiads
Book
Training
IMO Results
Forum
IMOmath
Geometry
1.
(12 p.)
Given a rhombus \( ABCD \), the circumradii of the triangles \( ABD \) and \( ACD \) are 12.5 and 25. Find the area of \( ABCD \).
2.
(10 p.)
Let \( X \) be a square of side length 2. Denote by \( S \) the set of all segments of length 2 with endpoints on adjacent sides of \( X \). The midpoints of the segments in \( S \) enclose a region with an area \( A \). Find \( [100A] \).
3.
(54 p.)
Let \( \triangle ABC \) have \( AB=6 \), \( BC=7 \), and \( CA=8 \), and denote by \( \omega \) its circumcircle. Let \( N \) be a point on \( \omega \) such that \( AN \) is a diameter of \( \omega \). Furthermore, let the tangent to \( \omega \) at \( A \) intersect \( BC \) at \( T \), and let the second intersection point of \( NT \) with \( \omega \) be \( X \). The length of \( \overline{AX} \) can be written in the form \( \tfrac m{\sqrt n} \) for positive integers \( m \) and \( n \), where \( n \) is not divisible by the square of any prime. Find \( m+n \).
4.
(17 p.)
The area of the triangle \( ABC \) is 70. The coordinates of \( B \) and \( C \) are \( (12,19) \) and \( (23,20) \), respectively, and the coordinates of \( A \) are \( (p,q) \). The line containing the median to side BC has slope 5. Find the largest possible value of p+q.
5.
(5 p.)
Let \( \alpha \) be the angle between vectors \( \vec a \) and \( \vec b \) with \( \vec a=2 \) and \( \vec b=3 \), given that the vectors \( \vec m=2\vec a\vec b \) and \( \vec n=\vec a+5\vec b \) are orthogonal. If \( \cos\alpha=\frac pq \) with \( q>0 \) and \( \gcd(p,q)=1 \), compute \( p+q \).
20052018
IMOmath.com
 imomath"at"gmail.com  Math rendered by
MathJax
Home

Olympiads

Book

Training

IMO Results

Forum

Links

About

Contact us