Final Round June 7–8, 2000

First Day

1. The sequence a_n is defined by $a_0 = 4$, $a_1 = 1$ and the recurrence formula $a_{n+1} = a_n + 6a_{n-1}$. The sequence b_n is given by

$$b_n = \sum_{k=0}^n \binom{n}{k} a_k.$$

Find the coefficients α, β so that b_n satisfies the recurrence formula $b_{n+1} = \alpha b_n + \beta b_{n-1}$. Find the explicite form of b_n .

- 2. A trapezoid *ABCD* with *AB* \parallel *CD* is inscribed in a circle *k*. Points *P* and *Q* are chose on the arc *ADCB* in the order A P Q B. Lines *CP* and *AQ* meet at *X*, and lines *BP* and *DQ* meet at *Y*. Show that points *P*,*Q*,*X*,*Y* lie on a circle.
- 3. Find all real solutions to the equation

$$|||||||x^2 - x - 1| - 3| - 5| - 7| - 9| - 11| - 13| = x^2 - 2x - 48.$$

Second Day

- 4. In a non-equilateral acute-angled triangle *ABC* with $\angle C = 60^\circ$, *U* is the circumcenter, *H* the orthocenter and *D* the intersection of *AH* and *BC*. Prove that the Euler line *HU* bisects the angle *BHD*.
- 5. Find all pairs of integers (m,n) such that

$$\left| (m^2 + 2000m + 999999) - (3n^3 + 9n^2 + 27n) \right| = 1.$$

6. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all x, y, z it holds that

$$f(x+f(y+z)) + f(f(x+y)+z) = 2y.$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1