38-th Austrian Mathematical Olympiad 2007 Final Round

Part 1 - May 17

- 1. In each cell of a 2007 × 2007 table there is an odd integer. Denote by Z_i the sum of the numbers in the *i*-th row and by S_j the sum of the numbers in the *j*-th column. Let $A = \prod_{i=1}^{2007} Z_i$ and $B = \prod_{j=1}^{2007} S_i$. Show that A + B cannot be equal to zero.
- 2. For each $n \in \mathbb{N}$ find the largest number C(n) such that the inequality

$$(n+1)\sum_{j=1}^{n}a_{j}^{2}-\left(\sum_{j=1}^{n}a_{j}\right)^{2}\geq C(n)$$

holds for all *n*-tuples (a_1, \ldots, a_n) of pairwise different integers.

- 3. For each nonempty subset of $M(n) = \{-1, -2, ..., -n\}$ we compute the product of its elements. What is the sum of all such products?
- 4. Let n > 4 be an integer. An inscribed convex n-gon $A_0A_1 \dots A_{n-1}$ is given such that its side lengths are $A_{i-1}A_i = i$ for $i = 1, \dots, n$ (where $A_n = A_0$). Denote by ϕ_i the (acute) angle between the line A_iA_{i+1} and the tangent to the circumcircle of the *n*-gon at A_i . Evaluate the sum $\Phi = \sum_{i=0}^{n-1} \phi_i$.

First Day

- 1. Find all nonnegative integers a < 2007 for which the congruence $x^2 + a \equiv 0 \pmod{2007}$ has exactly two different nonnegative integer solutions smaller than 2007.
- 2. Solve in nonnegative integers x_1, \ldots, x_6 the system of equations

$$x_k x_{k+1}(1-x_{k+2}) = x_{k+3} x_{k+4}, \quad k = 1, \dots, 6,$$

where $x_{k+6} = x_k$.

3. Determine all rhombuses with side length 2a for which there is a circle cutting a segment of length a from each side of the rhombus.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

Second Day

- 4. Consider the set *M* of all polynomials P(x) whose all roots are pairwise different integers and whose coefficients are integers less than 2007 in absolute value. What is the highest power among all polynomials in *M*?
- 5. A convex *n*-gon is triangulated, i.e. divided into triangles by nonintersecting diagonals. Prove that the vertices of the *n*-gon can each be labeled by the digits of number 2007 in such a way that the labels of the vertices of any quadrilateral composed of two adjacent triangles in the triangulation sum up to 9.
- 6. Let *U* be the circumcenter of a triangle *ABC* and *P* be a point on the extension of *UA* beyond *A*. Lines *g* and *h* are symmetric to *PB* and *PC* with respect to *BA* and *CA*, respectively. Let *Q* be the intersection of *g* and *h*. Find the locus of points *Q* as *P* takes all possible locations.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com