14-th Austrian Mathematical Olympiad 1983

Final Round

First Day

1. For every natural number x, let Q(x) be the sum and P(x) the product of the (decimal) digits of x. Show that for each $n \in \mathbb{N}$ there exist infinitely many values of x such that

$$Q(Q(x)) + P(Q(x)) + Q(P(x)) + P(P(x)) = n.$$

- 2. Let x_1, x_2, x_3 be the roots of $x^3 6x^2 + ax + a = 0$. Find all real numbers *a* for which $(x_1 1)^3 + (x_2 1)^3 + (x_3 1)^3 = 0$. Also, for each such *a*, determine the corresponding values of x_1, x_2 , and x_3 .
- 3. Let *P* be a point in the plane of a triangle *ABC*. Lines *AP*, *BP*, *CP* respectively meet lines *BC*, *CA*, *AB* at points *A'*, *B'*, *C'*. Points *A''*, *B''*, *C''* are symmetric to *A*, *B*, *C* with respect to *A'*, *B'*, *C'*, respectively. Show that

$$S_{A''B''C''} = 3S_{ABC} + 4S_{A'B'C'}.$$

Second Day

4. The sequence $(x_n)_{n \in \mathbb{N}}$ is defined by $x_1 = 2, x_2 = 3$, and

 $\begin{array}{rcl} x_{2m+1} & = & x_{2m} + x_{2m-1} & \quad \text{for } m \geq 1; \\ x_{2m} & = & x_{2m-1} + 2x_{2m-2} & \quad \text{for } m \geq 2. \end{array}$

Determine x_n as a function of n.

- 5. Given positive integers *a*,*b*, find all positive integers *x*, *y* satisfying the equation $x^{a+b} + y = x^a y^b$.
- 6. Planes π_1 and π_2 in Euclidean space \mathbb{R}^3 partition $S = \mathbb{R}^3 \setminus (\pi_1 \cup \pi_2)$ into several components. Show that for any cube in \mathbb{R}^3 , at least one of the components of *S* meets at least three faces of the cube.

