17-th Austrian Mathematical Olympiad 1986

Final Round

First Day

- 1. Show that a square can be inscribed in any regular polygon.
- 2. For $s,t \in \mathbb{N}$, consider the set $M = \{(x,y) \in \mathbb{N}^2 \mid 1 \le x \le s, 1 \le y \le t\}$. Find the number of rhombi with the vertices in M and the diagonals parallel to the coordinate axes.
- 3. Find all possible values of x_0 and x_1 such that the sequence defined by

$$x_{n+1} = \frac{x_{n-1}x_n}{3x_{n-1} - 2x_n}$$
 for $n \ge 1$

contains infinitely many natural numbers.

Second Day

- 4. Find the largest *n* for which there is a natural number *N* with *n* decimal digits which are all different such that *n*! divides *N*. Furthermore, for this largest *n* find all possible numbers *N*.
- 5. Show that for every convex *n*-gon $(n \ge 4)$, the arithmetic mean of the lengths of its sides is less than the arithmetic mean of the lengths of all its diagonals.
- 6. Given a positive integer *n*, find all functions $F : \mathbb{N} \to \mathbb{R}$ such that F(x+y) = F(xy-n) whenever $x, y \in \mathbb{N}$ satisfy xy > n.

