
21-st Austrian Mathematical Olympiad 1990

Final Round

First Day – May 30

1. Determine the number of integersn with 1≤ n≤ N = 19901990such thatn2−1
andN are coprime.

2. Show that for all integersn≥ 2,
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3. In a convex quadrilateralABCD, let E be the intersection point of the diagonals,
and letF1,F2, andF be the areas ofABE, CDE, andABCD, respectively. Prove
that √
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F .

Second Day – May 31

4. For each nonzero integern find all functionsf : R\ {−3,0}→ R satisfying
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=
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for all x 6= 0,−3.

Furthermore, for each fixedn find all integersx for which f (x) is an integer.

5. Determine all rational numbersr such that all solutions of the equation

rx2 +(r +1)x+(r −1) = 0

are integers.

6. A convex pentagonABCDE is inscribed in a circle. The distances ofA from the
lines BC,CD,DE area,b,c, respectively. Compute the distance ofA from the
line BE.
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