10-th Bosnia and Hercegovina Mathematical Olympiad 2005

Banja Luka, May 7-8, 2005

First Day

- 1. Point *H* is the orthocenter of a triangle *ABC*. Prove that the midpoints of the segments *AB* and *CH* and the intersection point of the bisectors of angles $\angle CAH$ and $\angle CBH$ are collinear.
- 2. If a_1, a_2, a_3 are nonnegative real numbers with $a_1 + a_2 + a_3 = 1$, prove the inequality

$$a_1\sqrt{a_2} + a_2\sqrt{a_3} + a_3\sqrt{a_1} \le \frac{1}{\sqrt{3}}$$

3. An integer $n \ge 2$ is given. Let $x_1, x_2, ..., x_n$ be distinct positive integers and let S_i be the sum of these numbers with x_i excluded, i = 1, 2, ..., n. Define

$$f(x_1, x_2, \dots, x_n) = \frac{\gcd(x_1, S_1) + \gcd(x_2, S_2) + \dots + \gcd(x_n, S_n)}{x_1 + x_2 + \dots + x_n}$$

Find the largest value of *f* over all possible *n*-tuples (x_1, \ldots, x_n) .

Second Day

- 4. Point A is chosen on the line containing a diameter PQ of the circle k(S,r), outside the circle. A tangent t to k passes through A and meets the circle at point T. Let p and q denote the tangents to k at P and Q, respectively, and let PT ∩ q = {N} and QT ∩ p = {M}. Show that the points A,M,N are collinear.
- 5. Suppose that a permutation (a_1, a_2, \ldots, a_n) of numbers $1, 2, \ldots, n$ satisfies

$$\frac{a_k^2}{a_{k+1}} \le k+2$$
 for $k = 1, 2, \dots, n-1$.

Prove that it must be the identity permutation.

6. Prove that if integers a, b, c satisfy $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 3$, then *abc* is a perfect cube.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Provided by Harun Šiljak www.imomath.com

1