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First Day

1. LetM andN be the feet of perpendiculars fromA to the external angle bisectors
corresponding to the verticesB andC of △ABC. Prove that the length of the
segmentMN is equal to the semi-perimeter of△ABC.

2. Find all pairs(a,b) of natural numbers such that

a2(b−a)

b + a

is a square of a prime number.

3. Leta1, a2, . . . , a100 be real numbers for which

a1 ≥ a2 ≥ ·· · ≥ a100≥ 0

a2
1+ a2

2 ≥ 100

a2
3 + a2

4+ · · ·+ a2
100≥ 100.

What is the minimal possible value for the suma1 + a2+ · · ·+ a100?

Second Day

4. Given an 1×n table (n ≥ 2), two players alternate the moves in which they write
the signs+ and− in the cells of the table. The first player always writes+,
while the second always writes−. It is not allowed for two equal signs to appear
in the adjacent cells. The player who can’t make a move loosesthe game. Which
of the players has a winning strategy?

5. A line intersects the sidesAB andBC of △ABC at pointsM andK. If the area of
the triangleMBK is equal to the area of the quadrilateralAMKC, prove that

|MB|+ |BK|

|AM|+ |CA|+ |KC|
≥

1
3
.

6. Let n be a natural number and letx > 0 be a real number such that none of the
numbersx, 2x, . . . , nx, 1

x , 2
x , . . . , [nx]

x is an integer. Prove that

[x]+ [2x]+ · · ·+[nx]+

[

1
x

]

+

[

2
x

]

+ · · ·+
[nx

x

]

= n[nx].
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