4-th Bosnia and Hercegovina Mathematical Olympiad 1999 Sarajevo, May 22–23, 1999

First Day

1. Let a, b, c be side lengths of a triangle. Prove that at least one of the equations

$$x^2 - 2bx + 2ac = 0, \quad x^2 - 2cx + 2ab, \quad x^2 - 2ax + 2bc$$

has no real solutions.

2. If a, b, c are the sides and R the circumradius of a triangle ABC, prove that

$$\frac{a^2}{b+c-a} + \frac{b^2}{c+a-b} + \frac{c^2}{a+b-c} \ge 3R\sqrt{3}.$$

3. Let $f : [0,1] \to \mathbb{R}$ be an injective function with f(0) + f(1) = 1. Show that there exist $x_1, x_2 \in [0,1]$ such that $2f(x_1) < f(x_2) + \frac{1}{2}$. Can you generalize this result?

Second Day

- 4. In a triangle *ABC*, the angle bisectors of the angles at *A* and *B* meet the opposite sides at *D* and *E*, respectively. Let *F* and *G* be the projections of *C* onto the lines *AD* and *BE*. Prove that *FG* is parallel to *AB*.
- 5. For a nonempty set *S*, let $\sigma(S)$ and $\pi(S)$ denote the sum and product of elements of *S*, respectively. Prove that

(a)
$$\sum \frac{1}{\pi(S)} = n;$$

(b) $\sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - (n+1)\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right),$

where the sums extend over all nonempty subsets *S* of $\{1, 2, ..., n\}$.

- 6. Consider the polynomial $P(x) = x^4 + 3x^3 + 3x + p$, where *p* is a real number.
 - (a) Find *p* such that P(x) has an imaginary root x_1 with $|x_1| = 1$ and $2Re(x_1) = \frac{1}{2}(\sqrt{17}-3)$.
 - (b) For this value of p, find all other roots of P(x).
 - (c) Show that there is no $n \in \mathbb{N}$ for which $x_1^n = 1$.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Provided by Harun Šiljak www.imomath.com