The Belarusian Team Selection Tests 2000

First Test

- 1. Find the minimal number of cells on a 5×7 board that must be painted so that any cell which is not painted has exactly one neighboring (having a common side) painted cell.
- 2. Let *P* be a point inside a triangle *ABC* with $\angle C = 90^{\circ}$ such that *AP* = *AC*, and let *M* be the midpoint of *AB* and *CH* be the altitude. Prove that *PM* bisects $\angle BPH$ if and only if $\angle A = 60^{\circ}$.
- 3. Does there exist a function $f : \mathbb{N} \to \mathbb{N}$ such that

$$f(f(n-1)) = f(n+1) - f(n)$$
 for all $n \ge 2$?

4. A closed pentagonal line is inscribed in a sphere of the diameter 1, and has all edges of length *l*. Prove that $l \le \sin \frac{2\pi}{5}$.

Second Test

- 1. All vertices of a convex polyhedron are endpoints of exactly four edges. Find the minimal possible number of triangular faces of the polyhedron.
- 2. Real numbers a, b, c satisfy the equation

$$2a^3 - b^3 + 2c^3 - 6a^2b + 3ab^2 - 3ac^2 - 3bc^2 + 6abc = 0.$$

If a < b, find which of the numbers b, c is larger.

- 3. In the Cartesian plane, two integer points (a_1,b_1) and (a_2,b_2) are *connected* if (a_2,b_2) is one of the points $(-a_1,b_1 \pm 1)$, $(a_1 \pm 1,-b_1)$. Show that there exists an infinite sequence of integer points in which every integer point occurs, and every two consecutive points are connected.
- 4. In a triangle *ABC* with $AC = b \neq BC = a$, points *E*, *F* are taken on the sides AC, BC respectively such that $AE = BF = \frac{ab}{a+b}$. Let *M* and *N* be the midpoints of *AB* and *EF* respectively, and *P* be the intersection point of the segment *EF* with the bisector of $\angle ACB$. Find the ratio of the area of *CPMN* to that of *ABC*.

Third Test

1. In a triangle *ABC*, let a = BC, b = AC and let m_a, m_b be the corresponding medians. Find all real numbers *k* for which the equality $m_a + ka = m_b + kb$ implies that a = b.

3. Each edge of a graph with 15 vertices is colored either red or blue in such a way that no three vertices are pairwise connected with edges of the same color. Determine the largest possible number of edges in the graph.

Fourth Test

1. Find all functions $f, g, h : \mathbb{R} \to \mathbb{R}$ such that

$$f(x+y^3) + g(x^3+y) = h(xy)$$
 for all $x, y \in \mathbb{R}$.

2. If *M* is a point inside a triangle *ABC*, prove that

$$\min\{MA, MB, MC\} + MA + MB + MC < AB + AC + BC.$$

- 3. Prove that for every positive integer *N* there exists an infinite arithmetic progression (a_k) such that:
 - (i) each term is a positive integer and the common difference *d* is not divisible by 10;
 - (ii) the sum of the decimal digits of each term is greater than N.

Fifth Test

- 1. Let *AM* and *AL* be the median and bisector of a triangle *ABC* ($M, L \in BC$). If $BC = a, AM = m_a, AL = l_a$, prove the inequalities:
 - (a) $a \tan \frac{\alpha}{2} \le 2m_a \le a \cot \frac{\alpha}{2}$ if $\alpha < \frac{\pi}{2}$, and $a \tan \frac{\alpha}{2} \ge 2m_a \ge a \cot \frac{\alpha}{2}$ if $\alpha > \frac{\pi}{2}$ (b) $2l_a \le a \cot \frac{\alpha}{2}$.
- 2. Let n, k be positive integers such that n is not divisible by 3 and $k \ge n$. Prove that there exists a positive integer m that is divisible by n and the sum of whose digits in decimal representation is k.

3. Suppose that every integer has been given one of the colors red, blue, green, yellow. Let x and y be odd integers such that $|x| \neq |y|$. Show that there are two integers of the same color whose difference has one of the following values: x, y, x+y, x-y.

Sixth Test

- 1. Find the smallest natural number *n* for which it is possible to partition the set $M = \{1, 2, ..., 40\}$ into *n* subsets $M_1, ..., M_n$ so that none of the M_i contains elements *a*, *b*, *c* (not necessarily distinct) with a + b = c.
- 2. A positive integer $\overline{A_k \dots A_1 A_0}$ is called *monotonic* if $A_k \leq \dots \leq A_1 \leq A_0$. Show that for any $n \in \mathbb{N}$ there is a monotonic perfect square with *n* digits.
- 3. Starting with an arbitrary pair (a,b) of vectors on the plane, we are allowed to perform the operations of the following two types:
 - (1) To replace (a,b) with (a+2kb,b) for an arbitrary integer $k \neq 0$;
 - (2) To replace (a,b) with (a,b+2ka) for an arbitrary integer $k \neq 0$.

However, we must change the type of operetion in any step.

- (a) Is it possible to obtain ((1,0), (2,1)) from ((1,0), (0,1)), if the first operation is of the type (1)?
- (b) Find all pairs of vectors that can be obtained from ((1,0),(0,1)) (the type of first operation can be selected arbitrarily).

Seventh Test

1. For any positive numbers a, b, c, x, y, z, prove the inequality

$$\frac{a^3}{x} + \frac{b^3}{y} + \frac{c^3}{z} \ge \frac{(a+b+c)^3}{3(x+y+z)}.$$

- 2. Let *X* be a variable point on the arc *AB* not containing *C* of the circumcircle *k* of a triangle *ABC*, and let O_1, O_2 be the incenters of the triangles *CAX* and *CBX*. Prove that the circumcircle of the triangle XO_1O_2 intersects *k* in a fixed point.
- 3. A game is played by $n \ge 2$ girls, everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, in an arbitrary order, exchange the balls they have at that moment. The game is called *nice* if at the end nobody has her own ball, and it is called *tiresome* if at the end everybody has her initial ball. Determine the values of *n* for which there exists a nice game and those for which there exists a tiresome game.

Eighth Test

- 1. The diagonals of a convex quadrilateral *ABCD* with AB = AC = BD intersect at *P*, and *O* and *I* are the circumcenter and incenter of $\triangle ABP$, respectively. Prove that if $O \neq I$ then *OI* and *CD* are perpendicular.
- 2. Prove that there exist two strictly increasing sequences (a_n) and (b_n) such that $a_n(a_n+1)$ divides b_n^2+1 for every natural number *n*.
- 3. Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that for any two integers x, y taken from two different subsets, the number $x^2 xy + y^2$ belongs to the third subset.

