23-rd Brazilian Mathematical Olympiad 2001

Third Round
First Day

1. Prove thata+b)(a+c) > 2y/abc(a+ b+ c) for all positive real numbera b, c.

2. Let be given an integexy > 1. We define a sequenéay)n>1 in the following
way. Foreverk > 0, a1 is the least integet> a, such thatx,apa; - --a) = 1.
Determine for which values @ are all the members of the sequence primes
or powers of primes.

3. LetE andF be points on the sid&B of a triangleABC such thatAE = EF =
FB. Let D be the foot of perpendicular froffa to line BC. Suppose thadD is
perpendicular t&€F and that the anglesBDF and Z/CFA are equal toc and X
for somex, respectively. Calculate the ratdB/DC.

Second Day

4. We are given a calculator with only two keys: sin and cosdmst Initially, the
display shows 1. We perform exactly 2001 operations on d@heme consisting
of pressing one of the two buttons. What is the biggest restiitese operations
that can be obtained?

5. In a convex quadrilateral, we define an altitude as a péipelar from the mid-
point of a side to the opposite side of the quadrilateral.v@rbat all the four
altitudes have a common point if and only if the quadrildtesanscribed in a
circle.

6. Given a strip of cells, infinite in both directions, andtones in the central cell
(indexed by 0). The following moves are permitted.

(A) Remove one stone from each of the célsdi + 1 and put one stone onto
celli—1;

(B) Remove two squares from cébind put one stone on each of the celisl,
i+2.

Prove that, no matter how we perform the moves, we ’ll end ugp fimite time
with a position in which no further moves can be made. Moregweve that
this final position does not depend on the sequence of moves.
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