24-th Brazilian Mathematical Olympiad 2002

Third Round

First Day

- 1. Show that there exists a set A of positive integers with the following properties:
 - (a) A has 2002 elements;
 - (b) The sum of any number of distinct elements of *A* (at least one) is never a perfect power (i.e. a number of the form a^b , where $a, b \in \mathbb{N}$ and $b \ge 2$).
- 2. Suppose that *ABCD* is a convex cyclic quadrilateral and *M* a point on the side *CD* such that the triangle *ADM* and the quadrilateral *ABCM* have the same area and the same perimeter. Prove that *ABCD* has two sides of equal lengths.
- 3. The cells of an $m \times n$ table $(m, n \ge 2)$ are numbered with numbers 1, 2, ..., mn in such a manner that, for each $i \le mn 1$, the cells *i* and i + 1 are adjacent (i.e. have a common side). Prove that there exists $i \le mn 3$ such that the cells *i* and i + 3 are adjacent.

Second Day

- 4. We define the *diameter* of a non-empty subset of $\{1, 2, ..., n\}$ as the absolute difference between its greatest element and its smallest element. Calculate the sum of the diameters of all non-empty subsets of $\{1, 2, ..., n\}$.
- 5. A finite number of squares with the total area 4 are given. Prove that it is possible to cover a unit square with these squares. (The squares may overlap.)

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com