32-nd Bulgarian Mathematical Olympiad 1983
Third Round

First Day

1. Determine all natural nummbaersn such that the following inequality holds:

2-13-1 m-1 n-1
224+1 3B+1 m+1 nd3+2

2. Let be given two intersecting circlég(O1,r1), ko(O2,r2). Their common tan-
gent meetg; atA andk; atB, andC is the common point of the circles closer to
AB. The circumradius ofAAABC is denoted as, andO;0, = d.

(a) Prove that iz ACB = Z0;,CO;, thend? = r? +-r3 +r2.
(b) Prove thatifd? = r2 +rZ+r2, then/ACB = £0,COs.

3. A convex quadrilateral?” is to be cut inton triangles whose vertices are at
vertices or.#” or in the interior of2#", and whose every side is either a side of
¢ or a side of some other triangle. Prove that:

(a) such a cutting is possible for every even number
(b) itis not possible fon = 1983.

Second Day

4. The sequencéay) is defined inductively byyy =az=1,a = a4 = —1, and
an = a,_1a_28n_4. Determineaoga

5. Show that the unique pair of real numbegpsq) for which the inequality

VI px-g[< Y22

2

is satisfied, is the paiip,q) = (-1, WZTH)-

6. Let be given a regular pyramid with ba8BCD and topV. A point M on edge
BC, satisfyingBM = 2MC, is the point ofBC nearest to linéV. Given that the
distance fronM to AV is d, find the volume of the pyramid.
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