38-th Bulgarian Mathematical Olympiad 1989 Third Round

First Day

1. Suppose that p and q are prime numbers such that

$$\sqrt{p^2 + 7pq + q^2} + \sqrt{p^2 + 14pq + q^2}$$

is an integer. Prove that p = q.

- 2. Prove that for every integer $n \ge 1$ the equation $x \cos x = 1$ has a unique solution in the interval $[2n\pi, (2n+1)\pi]$. Find $\lim_{n \to \infty} (x_{n+1} x_n)$.
- 3. A line parallel to the side *AB* of a triangle *ABC* meets the sides *AC* and *BC* at *M* and *P*, respectively. The lines *AP* and *BM* intersect at *D*. Prove that the line passing through the orthocenters of the triangles *ADM* and *BDP* is perpendicular to *CD*.

Second Day

- 4. A convex n-gon (n > 3) has the property that there exist n 2 diagonals of the n-gon, each of which bisects its area. Find all such n-gons.
- 5. A plane parallel to the base ABC of a tetrahedron SABC cuts the edges SA, SB, SC at A_1, B_1, C_1 , respectively. Let A_2, B_2, C_2 respectively be the midpoints of B_1C_1, C_1A_1, A_1B_1 . Prove that if $AA_2 \perp B_1C_1$ and $BB_2 \perp C_1A_1$, then
 - (a) $CC_2 \perp A_1B_1$;
 - (b) The line through the orthocenter of $\triangle ABC$ and the circumcenter of $\triangle A_1B_1C_1$ is perpendicular to the plane ABC.
- 6. Let $0 \le a_1 \le a_2 \le \cdots \le a_5$ be real numbers. Denote

$$S = a_1 + a_2 + a_3 + a_4 + a_5, \quad P = \prod_{1 \le i \le j \le 5} (S - 2(a_i + a_j)).$$

Prove that if $a_1 + 3a_2 + a_4 \ge 3a_3 + a_5$, then $P \le (a_1a_2a_3a_4a_5)^2$.

