44-th Bulgarian Mathematical Olympiad 1995 Third Round

First Day

- 1. Let *p* and *q* be positive numbers such that the parabola $y = x^2 2px + q$ has no common point with the *x*-axis. Prove that there exist points *A* and *B* on the parabola such that *AB* is parallel to the *x*-axis and $\angle AOB = 90^\circ$, where *O* is the origin (0,0), if and only if $p^2 < q \le 1/4$. Find the values *p* and *q* for which the segment *AB* is unique.
- 2. Let $A_1A_2...A_7$, $B_1B_2...B_7$, $C_1C_2...C_7$ be regular heptagons with areas S_A, S_B, S_C , respectively, such that $A_1A_2 = B_1B_3 = C_1C_4$. Prove that

$$\frac{1}{2} < \frac{S_B + S_C}{S_A} < 2 - \sqrt{2}.$$

Let n > 1 be an integer. Find the number of permutations (a₁, a₂,..., a_n) of the numbers 1,2,...,n with the property that a_i > a_{i+1} holds for only one index i ∈ {1,2,...,n-1}.

Second Day

4. Let $n \ge 2$ and $0 \le x_i \le 1$ for $i = 1, 2, \dots, n$. Prove that

$$(x_1 + x_2 + \dots + x_n) - (x_1 x_2 + x_2 x_3 + \dots + x_n x_1) \le \left[\frac{n}{2}\right].$$

When does equality hold?

- 5. Let *M* be an interior point of the triangle *ABC*. The lines *AM*, *BM*, *CM* meet the opposite sides of the triangle at A_1, B_1, C_1 respectively. Prove that if *M* is the centroid of $\triangle A_1B_1C_1$, then *M* is the centroid of $\triangle ABC$.
- 6. Find all pairs of positive integers (x, y) for which $\frac{x^2 + y^2}{x y}$ is an integer that divides 1995.

