47-th Bulgarian Mathematical Olympiad 1998

Third Round - April 25-26, 1998

First Day

- 1. Find the least integer $n \ge 3$ with the following property: For any coloring of n different points A_1, A_2, \ldots, A_n on a line such that $A_1A_2 = A_2A_3 = \cdots = A_{n-1}A_n$ in two colors, there are three points A_i, A_j, A_{2j-i} which have the same color.
- 2. Let ABCD be a quadrilateral such that AD = CD and $\angle DAB = \angle ABC < 90^{\circ}$. The line passing through D and the midpoint of BC intersects AB at point E. Prove that $\angle BEC = \angle DAC$.
- 3. Prove that there is no function $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$f(x)^2 \ge f(x+y)(f(x)+y)$$
 for all $x, y > 0$.

Second Day

- 4. Let $f(x) = x^3 3x + 1$. Find the number of different real solutions of the equation f(f(x)) = 0.
- 5. A convex pentagon *ABCDE* is inscribed in a circle with radius *R*. Let r_{XYZ} denote the inradius of a triangle *XYZ*. Prove that

(a)
$$\cos \angle CAB + \cos \angle ABC + \cos \angle BCA = 1 + \frac{r_{ABC}}{R}$$
;

- (b) if $r_{ABC} = r_{AED}$ and $r_{ABD} = r_{AEC}$, then $\triangle ABC \cong \triangle AED$.
- 6. Show that the equation $x^2y^2 = z^2(z^2 x^2 y^2)$ has no solution in positive integers.

