36-th Bulgarian Mathematical Olympiad 1987 Fourth Round – Sofia, May 16-17

First Day

- 1. Let $f(x) = x^n + a_1 x^{n-1} + \dots + a_n$ $(n \ge 3)$ be a polynomial with real coefficients and *n* real roots, such that $a_{n-1}/a_n > n+1$. Prove that if $a_{n-2} = 0$, then at least one root of f(x) lies in the open interval $(-\frac{1}{2}, \frac{1}{n+1})$.
- 2. Let be given a polygon *P* which is mapped onto itself by two rotations: ρ_1 with center O_1 and angle ω_1 , and ρ_2 with center O_2 and angle ω_2 ($0 < \omega_i < 2\pi$). Show that the ratio ω_1/ω_2 is rational.
- 3. Let *MABCD* be a pyramid with the square *ABCD* as the base, in which MA = MD, $MA^2 + AB^2 = MB^2$ and the area of $\triangle ADM$ is equal to 1. Determine the radius of the largest ball that is contained in the given pyramid.

Second Day

- 4. The sequence (x_n)_{n∈N} is defined by x₁ = x₂ = 1, x_{n+2} = 14x_{n+1} x_n 4 for each n ∈ N. Prove that all terms of this sequence are perfect squares.
- 5. Let *E* be a point on the median *AD* of a triangle *ABC*, and *F* be the projection of *E* onto *BC*. From a point *M* on *EF* the perpendiculars *MN* to *AC* and *MP* to *AB* are drawn. Prove that if the points N, E, P lie on a line, then *M* lies on the bisector of $\angle BAC$.
- 6. Let Δ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than 45°,90° and 135°. For each triangle T ∈ Δ, f(T) denotes the triangle with vertices at the second intersection points of the altitudes of T with the circle.
 - (a) Prove that there exists a natural number *n* such that for every triangle $T \in \Delta$, among the triangles $T, f(T), \ldots, f^n(T)$ (where $f^0(T) = T$ and $f^k(T) = f(f^{k-1}(T))$) at least two are equal.
 - (b) Find the smallest *n* with the property from (a).

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com