14-th Canadian Mathematical Olympiad 1982

May 5, 1982

- 1. Let *O* be a point in the plane of a convex quadrilateral $A_1A_2A_3A_4$ and let B_1, B_2, B_3, B_4 be points such that OB_i is parallel and equal in length to A_iA_{i+1} for i = 1, 2, 3, 4 (where $A_5 = A_1$). Show that the area of quadrilateral $B_1B_2B_3B_4$ is twice that of $A_1A_2A_3A_4$.
- 2. Let a, b, c be the roots of the equation $x^3 x^2 x 1 = 0$.
 - (a) Show that a, b, c are distinct.
 - (b) Show that $\frac{a^{1982} b^{1982}}{a b} + \frac{b^{1982} c^{1982}}{b c} + \frac{c^{1982} a^{1982}}{c a}$ is an integer.
- 3. Determine the smallest number g(n) os points of a set in the *n*-dimensional Euclidean space \mathbb{R}^n such that every point in \mathbb{R}^n is at irrational distance from at least one point in that set.
- 4. Let f_n be the number of permutations of the set $S_n = \{1, 2, ..., n\}$ having no fixed points, and g_n be the number with exactly one fixed point. Show that $|f_n g_n| = 1$.
- 5. The altitudes of a tetrahedron *ABCD* rom *A*, *B*, *C* and *D* have lengths h_a , h_b , h_c , h_d respectively. These altitudes are are extended externally to points A', B', C', D' respectively, where $AA' = k/h_a$, $BB' = k/h_b$, $CC' = k/h_c$ and $DD' = k/h_d$ for some constant *k*. Prove that the centroids of the tetrahedrons *ABCD* and *A'B'C'D'* coincide.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com