Chinese IMO Team Selection Test 2003

Time: 4.5 hours each day.

First Day – March 31

- 1. In an acute triangle *ABC*, the angle bisector of $\angle A$ meets side *BC* at *D*. Let *E* and *F* be the feet of perpendiculars from *D* to *AC* and *AB* respectively. Lines *BE* and *CF* intersect at *H*, and the circumcircle of $\triangle AFH$ meets *BE* at *H* and *G*. Show that the triangle with side lengths *BG*, *GE*, *BF* is right-angled.
- 2. Find the subset *A* of $\{0, 1, 2, ..., 29\}$ of the greatest possible cardinality with the following property: for any integer *k* and any $a, b \in A$ (not necessarily distinct), the number a + b + 30k is not a product of two consecutive integers.
- 3. For any $\alpha = (a_1, a_2, \dots, a_n)$ and $\beta = (b_1, b_2, \dots, b_n)$ from \mathbb{R}^n , define

 $\gamma(\alpha,\beta) = (|a_1 - b_1|, |a_2 - b_2|, \dots, |a_n - b_n|).$

For a finite subset *A* of \mathbb{R}^n , let $D(A) = \{\gamma(\alpha, \beta) \mid \alpha, \beta \in A\}$. Show that $|D(A)| \ge |A|$.

- 4. Find all functions $f : \mathbb{N} \to \mathbb{R}$ satisfying:
 - (i) $f(n+1) \ge f(n)$ for all $n \ge 1$;
 - (ii) f(mn) = f(m)f(n) for any coprime *m* and *n*.
- 5. Consider $A = \{1, 2, ..., 2002\}$ and $M = \{1001, 2003, 3005\}$. We say that a nonempty subset *B* of *A* is *M*-free if the sum of any two elements of *B* is not in *M*. If $A = A_1 \cup A_2$, $A_1 \cap A_2 = \emptyset$ and both A_1, A_2 are *M*-free, we say that the ordered pair (A_1, A_2) is an *M*-partition of *A*. Find the number of *M*-partitions of *A*.
- 6. The sequence (x_n) satisfies $x_0 = 0$, $x_2 = x_1\sqrt[3]{2}$, $x_3 \in \mathbb{N}$ and

$$x_{n+1} = \frac{1}{\sqrt[3]{4}} x_n + \sqrt[3]{4} x_{n-1} + \frac{1}{2} x_{n-2}$$
 for all $n \ge 2$.

Determine the minimum number of integer terms that the sequence must have.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com