Chinese IMO Team Selection Tests 1987

First Test

- 1. For all positive integers k find the smallest positive integer f(k) for which there exist 5 sets S_1, S_2, \ldots, S_5 satisfying:
 - (i) $|S_i| = k$ for i = 1, ..., 5;
 - (ii) $S_i \cap S_{i+1} = \emptyset$ for i = 1, ..., 5 (where $S_6 = S_1$);
 - (iii) $|\bigcup_{i=1}^{5} S_i| = f(k)$.

Generalize to n > 3 sets instead of 5.

- 2. A rectangular polygon \mathscr{P} with 100 sides has the following properties: (i) all its sides are parallel to the coordinate axes, and (ii) all its sides have odd integral lengths. Prove that the area of \mathscr{P} is odd.
- 3. Define the sequence (r_n) by $r_1 = 1$ and $r_n = r_1 r_2 \cdots r_{n-1}$ for $n \ge 2$. Prove that if a_1, a_2, \dots, a_n are positive integers such that $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < 1$, then

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}.$$

Second Test

- 1. Given a convex figure $\mathscr S$ in the Cartesian plane that is symmetric with respect to both axis, let $\mathscr A$ be a rectangle of the maximum possible area lying entirely within $\mathscr S$. Let λ be the smallest ratio of the similitude with respect to the center of $\mathscr A$ such that the image of $\mathscr A$ under this similitude covers $\mathscr S$. Find the largest value of λ over all figures $\mathscr S$.
- 2. Find the positive integers *n* for which the equation $x^3 + y^3 + z^3 = nx^2y^2z^2$ has positive integer solutions.
- 3. Prove that in every simple graph with 2n vertices and $n^2 + 1$ edges ($n \ge 3$) there exist four vertices which are connected with each other by at least five edges.

