First Test – May 3

1. What necessary and sufficient conditions must real numbers A, B, C satisfy in order that

$$A(x-y)(x-z) + B(y-z)(y-x) + C(z-x)(z-y) \ge 0$$

for all real numbers *x*, *y*, *z*?

- 2. Determine all functions $f : \mathbb{Q} \to \mathbb{C}$ such that
 - (i) $f(x_1 + x_2 + \dots + x_{1988}) = f(x_1)f(x_2)\cdots f(x_{1988})$ for all rational numbers $x_1, x_2, \dots, x_{1988}$, and
 - (ii) $\overline{f(1988)}f(x) = f(1988)\overline{f(x)}$ for all $x \in \mathbb{Q}$, where \overline{z} denotes the complex conjugate of *z*.
- 3. In a triangle *ABC* with $\angle C = 30^\circ$, *D* and *E* are points on *AC* and *BC* respectively such that AD = BE = AB. If *O* and *I* are the circumcenter and incenter of $\triangle ABC$, prove that OI = DE and $OI \perp DE$.
- 4. Let *k* be a positive integer. Consider the set $S_k = \{(a,b) \mid a, b = 1, 2, ..., k\}$. Two elements (a,b) and (c,d) of S_k are said to be indistinguishable if $a c \equiv -1, 0$ or 1 (mod *k*) and $b d \equiv -1, 0$ or 1 (mod *k*). Let r_k be the greatest possible number of pairwise distinguishable elements of S_k .
 - (a) Find r_5 with proof.
 - (b) Find r_7 with proof.
 - (c) Find r_k in general (no proof needed).

Second Test – May 4

- 1. Define $x_n = 3x_{n-1} + 2$ for all positive integers *n*. Prove that an integer value can be chosen for x_0 so that x_{100} is divisible by 1988.
- 2. Let *ABCD* be a fixed trapezoid with *AB* || *CD* and let *M*, *N* be fixed points on side *AB* with *M* between *A* and *N*. For a variable point *P* on side *CD*, *ND* meets *AP* and *MC* at *E* and *F* and *BP* meets *MC* at *G*, respectively. For which *P* is the area of quadrilateral *PEFG* maximal?
- 3. A polygon in the *xy*-plane has area greater than *n*. Prove that it contains some points (x_i, y_i) , i = 1, 2, ..., n + 1, such that $x_i x_j$ and $y_i y_j$ are integers for all *i*, *j*.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 4. With u, v as input, a machine generates uv + v as output. In the first operation, the only operations that can be used are -1, 1 and a fixed real number c. In later operations, numbers generated in preceeding operations can also be used. Prove that for any polynomial $f(x) = a_0 x^n + \cdots + a_n$ with integer coefficients the machine can generate f(c) as output after finitely many operations.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com