Croatian Team Selection Test 2003

Pula, May 9

- 1. Find all pairs (m, n) of natural numbers for which the numbers $m^2 4n$ and $n^2 4m$ are both perfect squares.
- 2. Let B be a point on a circle k_1 , $A \neq B$ be a point on the tangent to the circle at B, and C a point not lying on k_1 for which the segment AC meets k_1 at two distinct points. Circle k_2 is tangent to line AC at C and to k_1 at point D, and does not lie in the same half-plane as B. Prove that the circumcenter of triangle BCD lies on the circumcircle of $\triangle ABC$.
- 3. For which $n \in \mathbb{N}$ is it possible to arrange a tennis tournament for doubles with n players such that each player has every other player as an opponent exactly once?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu

1