42-nd Czech and Slovak Mathematical Olympiad 1993

- 1. Find all natural numbers *n* for which $7^n 1$ is divisible by $6^n 1$.
- In fields of a 19 × 19 table are written integers so that any two lying on neighboring fields differ at most by 2 (two fields are neighboring if they share a side). Find the greatest possible number of mutually different integers in such a table.
- 3. Let AKL be a triangle such that $\angle ALK > 90^\circ + \angle LAK$. Construct an equilateral trapezoid ABCD (i.e. with three sides equal) with $AB \perp CD$ such that *K* lies on the side *BC*, *L* on the diagonal *AC* and the lines *AK* and *BL* intersect at the circumcenter of the trapezoid.
- 4. The sequence (a_n) of natural numbers is defined by $a_1 = 2$ and a_{n+1} equals the sum of tenth powers of the digits of a_n for all $n \ge 1$. Are there numbers which appear twice in the sequence (a_n) ?
- 5. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that f(-1) = f(1) and

$$f(x) + f(y) = f(x + 2xy) + f(y - 2xy) \quad \text{for all } x, y \in \mathbb{Z}.$$

6. Show that there exists a tetrahedron which can be partitioned into eight congruent tetrahedra, each of which is similar to the original one.

