34-th German Federal Mathematical Competition 2003/04

Second Round

- 1. Let *k* be a positive integer. We call an integer *k*-*typical* if each of its divisors leaves a remainder 1 upon division by *k*. Prove that:
 - (a) If the number of divisors of a positive integer *n* (including 1 and *n*) is *k*-typical then *n* is a *k*-th power of an integer.
 - (b) The converse of (a) is false if *k* is greater than 2.
- 2. Finitely many chords are drawn in a circle of radius 1. Every diameter has common points with at most k of these chords, where k is a given positive integer. Prove that the sum of the lengths of all the chords is less than $k\pi$.
- 3. Two circles k_1 and k_2 intersect at distinct points A and B. The tangents to k_2 and k_1 at A meet k_1 and k_2 respectively again in C_1 and C_2 . The line C_1C_2 intersects k_1 again in D. Prove that BD bisects the chord AC_2 .
- 4. Prove that there exist infinitely many pairs of distinct positive rational numbers (x, y) such that both $\sqrt{x^2 + y^3}$ and $\sqrt{x^3 + y^2}$ are rational numbers.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Eckard Specht www.imomath.com