35-th German Federal Mathematical Competition 2004/05

Second Round

- 1. Players *A* and *B* are playing a game on a 100×100 chessboard. In the beginning *A* has a marker on the lower left square whereas *B* has a marker on the lower right square. With *A* starting, the players alternately move their marker horizontally or vertically to an adjacent square. Prove that *A* can always play so that after finitely many moves his marker lies on the same square as *B*'s marker.
- 2. A rational number x is given. Show that there are only finitely many triples (a,b,c) of integers with a < 0 and $b^2 4ac = 5$ for which $ax^2 + bx + c > 0$.
- 3. Circles k_1 and k_2 meet at two distinct points *A* and *B*. Two lines through *B* meet k_1 at *C* and *D* and k_2 at *E* and *F*, respectively, so that *B* lies on the segments *CE* and *DF*. Let *M* be the midpoint of *CE* and *N* that of *DF*. Prove that the triangles *ACD*, *AEF*, and *AMN* are similar.
- 4. We consider closed polygonal lines $P_1P_2...P_nP_1$ $(n \ge 3)$, where no two of the *n* points $P_1,...,P_n$ are collinear. Let A(n) be the largest possible number of self-intersections of such a polygonal line. Prove that $A(n) = \frac{n(n-3)}{2}$ for *n* odd and $A(n) = \frac{n(n-4)}{2} + 1$ for *n* even.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Eckard Specht www.imomath.com