28-th German Federal Mathematical Competition 1997/98

Second Round

- 1. Find all integer solutions (x, y, z) of the equation xy + yz + zx xyz = 2.
- 2. Prove that there exist 16 subsets of set $M = \{1, 2, ..., 10000\}$ with the following property: For every $z \in M$ there are eight of these subsets whose intersection is $\{z\}$.
- 3. A triangle *ABC* satisfies $BC = AC + \frac{1}{2}AB$. Point *P* on side *AB* is taken so that AP = 3PB. Prove that $\angle PAC = 2\angle CPA$.
- 4. Let $3(2^n 1)$ points be selected in the interior of a polyhedron \mathscr{P} with volume 2^n , where *n* is a positive integer. Prove that there exists a convex polyhedron \mathscr{U} with volume 1, contained entirely inside \mathscr{P} , which contains none of the selected points.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1