Eötvös Mathematical Competition 1902

1. Consider an arbitrary quadratic polynomial $Q(x)=A x^{2}+B x+C$.
(a) Prove that $Q(x)$ can be written in the form

$$
Q(x)=k \frac{x(x-1)}{1 \cdot 2}+l x+m
$$

where k, l, m depend on the coefficients A, B, C.
(b) Prove that $Q(x)$ takes integral values for every integer x if and only if k, l, m are integers.
2. Let S be a given sphere with center O and radius r, and P be a point outside S. Sphere S^{\prime} has center P and radius $P O$. Denote by \mathcal{F} the area of the surface of the part of S^{\prime} that lies inside S. Prove that \mathcal{F} is independent of point P.
3. The area T and an angle γ of a triangle are given. Find the side lengths a and b so that the side c opposite γ is shortest possible.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu
Typed in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa

