1. Suppose that $2^{p}-1$ is a prime number. Prove that the sum of all positive divisors of $n=2^{p-1}\left(2^{p}-1\right)$ (excluding $\left.n\right)$ is exactly n.
2. For a given pair of values x and y satisfying $x=\sin \alpha, y=\sin \beta$, there can be four different values of $z=\sin (\alpha+\beta)$.
(a) Set up a relation between x, y and z not involving trigonometric functions or radicals.
(b) Find those pairs of values (x, y) for which $z=\sin (\alpha+\beta)$ assumes fewer than four distinct values.
3. For a rhombus $A B C D$, let k_{1} be the circle through B, C, D, k_{2} be the circle through A, C, D, k_{3} be the circle through A, B, D, and k_{4} be the circle through A, B, C. Prove that the tangents to k_{1} and k_{3} at B form the same angle as the tangents to k_{2} and k_{4} at A.
