- 1. Suppose that $2^p 1$ is a prime number. Prove that the sum of all positive divisors of $n = 2^{p-1}(2^p 1)$ (excluding n) is exactly n.
- 2. For a given pair of values x and y satisfying $x = \sin \alpha$, $y = \sin \beta$, there can be four different values of $z = \sin(\alpha + \beta)$.
 - (a) Set up a relation between x, y and z not involving trigonometric functions or radicals.
 - (b) Find those pairs of values (x, y) for which $z = \sin(\alpha + \beta)$ assumes fewer than four distinct values.
- 3. For a rhombus ABCD, let k_1 be the circle through B, C, D, k_2 be the circle through A, C, D, k_3 be the circle through A, B, D, and k_4 be the circle through A, B, C. Prove that the tangents to k_1 and k_3 at B form the same angle as the tangents to k_2 and k_4 at A.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu Typed in IAT_FX by Ercole Suppa

1