Eötvös Mathematical Competition 1904

1. Prove that if an inscribed pentagon has equal angles then its sides are equal.
2. If a is a natural number, show that the number of positive integral solutions of the equation

$$
\begin{equation*}
x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}=a \tag{1}
\end{equation*}
$$

is equal to the number of non-negative integral solutions of

$$
\begin{equation*}
y_{1}+2 y_{2}+3 y_{3}+\cdots+n y_{n}=a-\frac{n(n+1)}{2} \tag{2}
\end{equation*}
$$

3. Let $A_{1} A_{2}$ and $B_{1} B_{2}$ be the diagonals and O be the center of a rectangle. Find and construct the set of all points P that satisfy simultaneously the four inequalities

$$
A_{1} P>O P, \quad A_{2} P>O P, \quad B_{1} P>O P, \quad B_{2} P>O P
$$

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu
Typed in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa

