Eötvös Mathematical Competition 1905

1. Find the necessary and sufficient conditions on positive integers n, p for the system of equations

$$
x+p y=n, \quad x+y=p^{z}
$$

to have a positive integral solution (x, y, z). Also prove that there is at most one such solution.
2. Divide the unit square into 9 equal squares and remove the central square. Now treat each of the remaining 8 squares the same way, and repeat this process n times.
(a) How many squares of side length $1 / 3^{n}$ remain?
(b) What is the limit sum of the areas of the removed squares as n approaches infinity?

3. Let C_{1} be any point on side $A B$ of a triangle $A B C$. The lines through A and B parallel to $C C_{1}$ intersect the lines $B C$ and $A C$ respectively at A_{1} and B_{1}. Prove that

$$
\frac{1}{A A_{1}}+\frac{1}{B B_{1}}=\frac{1}{C C_{1}}
$$

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu
Typed in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa

