Eötvös Mathematical Competition 1906

1. Prove that if $\tan \frac{\alpha}{2}$ is rational (or undefined) then so are $\cos \alpha$ and $\sin \alpha$; Conversely, if $\cos \alpha$ and $\sin \alpha$ are rational then $\tan \frac{\alpha}{2}$ is rational or undefined.
2. Let K, L, M, N be the centers of the squares erected externally on the sides of a rhombus. Prove that $K L M N$ is a square.
3. Let $a_{1}, a_{2}, \ldots, a_{n}$ be an arbitrary arrangement of the numbers $1,2, \ldots, n$. If n is odd, prove that the product $\left(a_{1}-1\right)\left(a_{2}-2\right) \cdots\left(a_{n}-n\right)$ is even.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu
Typed in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa

