Eötvös Mathematical Competition 1910

1. If real numbers a, b, c satisfy $a^{2}+b^{2}+c^{2}=1$, prove the inequalities

$$
-\frac{1}{2} \leq a b+b c+c a \leq 1
$$

2. Let a, b, c, d and u be integers such that each of the numbers $a c, b c+a d, b d$ is a multiple of u, show that $b c$ and $a d$ also are multiples of u.
3. The lengths of sides $C B$ and $C A$ of $\triangle A B C$ are a and b, and the angle between them is $\gamma=120^{\circ}$. Express the length of the bisector of γ in terms of a and b.

The IMO Compendium Group,

