Eötvös Mathematical Competition 1911

1. Show that, if the real numbers a, b, c, A, B, C satisfy

$$
a C-2 b B+c A=0 \quad \text { and } \quad a c-b^{2}>0
$$

then $A C-B^{2}<0$.
2. Let Q be any point on the circumcircle of a regular octagon $P_{1} P_{2} P_{3} \cdots P_{8}$. Prove that the sum of the fourth powers of the distances from Q to the diameters $P_{1} P_{5}$, $P_{2} P_{6}, P_{3} P_{7}, P_{4} P_{8}$ is independent of the position of Q.
3. Prove that $3^{n}+1$ is not divisible by 2^{n} for any integer $n>1$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com
Typed in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa

