Eötvös Mathematical Competition 1936

1. Prove that for all positive integers n,

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\cdots \frac{1}{(2 n-1) 2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}
$$

2. A point S inside a triangle $A B C$ is such that the areas of the triangles $A B S, B C S$ and $C A S$ are all equal. Prove that S is the centroid of $\triangle A B C$.
3. Let a be any positive integer. Prove that there exists a unique pair of positive integers (x, y) such that

$$
x+\frac{1}{2}(x+y-1)(x+y-2)=a
$$

