Eötvös Mathematical Competition 1937

1. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive integers and k be an integer greater than the sum of the a_{i} 's. Prove that $a_{1}!a_{2}!\cdots a_{n}!<k!$.
2. Two circles in space are said to be tangent to each other if they have a common tangent at the same point of tangency. Assume that some three circles in space are mutually tangent at three distinct points. Prove that they either all lie in a plane or all lie on a sphere.
3. Let $P, Q, A_{1}, A_{2}, \ldots, A_{n}$ be distinct points such that the A_{i} are not collinear. Suppose that

$$
P A_{1}+P A_{2}+\cdots+P A_{n}=Q A_{1}+Q A_{2}+\cdots+Q A_{n}=s
$$

Prove that there exists a point R such that $R A_{1}+R A_{2}+\cdots+R A_{n}<s$.

The IMO Compendium Group,

