Eötvös Mathematical Competition 1938

1. Prove that an integer n has a representation as a sum of two squares if and only if so does $2 n$.
2. Prove that for all integers $n>1$,

$$
\frac{1}{n}+\frac{1}{n+1}+\cdots \frac{1}{n^{2}-1}+\frac{1}{n^{2}}>1
$$

3. Prove that for any acute triangle there is a point in space such that every segment joining a vertex to a point on the line through the other two vertices subtends a right angle at this point.
