## Eötvös Mathematical Competition 1939

1. Let $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$ be real numbers for which $a_{1} a_{2}>0, a_{1} c_{1} \geq b_{1}^{2}$ and $a_{2} c_{2}>b_{2}^{2}$. Prove that

$$
\left(a_{1}+a_{2}\right)\left(c_{1}+c_{2}\right) \geq\left(b_{1}+b_{2}\right)^{2}
$$

2. Determine the highest power of 2 that divides $\left(2^{n}\right)$ !.
3. In an acute triangle $A B C$, three semicircles are constructed outwardly on the sides $B C, C A$, and $A B$. Construct points $A^{\prime}, B^{\prime}$ and $C^{\prime}$ on the semicircles corresponding to $A, B, C$ respectively such that $A B^{\prime}=A C^{\prime}$, $B C^{\prime}=B A^{\prime}$ and $C A^{\prime}=C B^{\prime}$.
