Kürschák Mathematical Competition 1982

1. For any five points A, B, P, Q, R in a plane, prove that

$$
A B+P Q+Q R+R P \leq A P+A Q+A R+B P+B Q+B R
$$

2. Let $n>2$ be an even number. The squares of an $n \times n$ chessboard are colored with $\frac{1}{2} n^{2}$ colors in such a way that every color is used for coloring exactly two squares. Prove that one can place n rooks on squares of n different colors such that no two rooks attack each other.
3. For a positive integer n denote by $r(n)$ the sum of the remainders when n is divided by $1,2, \ldots, n$ respectively. Prove that $r(k)=r(k-1)$ for infinitely many positive integers k.
