Kürschák Mathematical Competition 1984

1. Rational numbers x, y and z satisfy the equation

$$
x^{3}+3 y^{3}+9 z^{3}-9 x y z=0 .
$$

Prove that $x=y=z=0$.
2. If the polynomial $f(x)=x^{n}+a_{1} x_{n-1}+\cdots+a_{n-1} x+1$ has non-negative coefficients and n real roots, prove that $f(2) \geq 3^{n}$.
3. Given are $n+1$ points $P_{1}, P_{2}, \ldots, P_{n}$ and Q in the plane, no three collinear. Assume that for any two different points P_{i} and P_{j} there is a point P_{k} such that the point Q lies inside the triangle $P_{i} P_{j} P_{k}$. Prove that n is an odd number.

