## Kürschák Mathematical Competition 1985

1. Writing down the first 4 rows of the Pascal triangle in the usual way and then adding up the numbers in vertical columns, we obtain 7 numbers as shown below. If the same is done with the first 1024 rows of the Pascal triangle, how many of the 2047 numbers thus obtained will be odd?

2. Let $A_{1} B_{1} A_{2}, B_{1} A_{2} B_{2}, A_{2} B_{2} A_{3}, \ldots, B_{13} A_{14} B_{14}, A_{14} B_{14} A_{1}$ and $B_{14} A_{1} B_{1}$ be equilateral rigid plates that can be folded along the edges $A_{1} B_{1}, B_{1} A_{2}, \ldots, A_{14} B_{14}$ and $B_{14} A_{1}$ respectively. Can they be folded so that all 28 plates lie in the same plane?
3. Given are $n$ integers, not necessarily distinct, and two positive integers $p$ and $q$. If the $n$ numbers are not all distinct, choose two equal ones. Add $p$ to one of them and subtract $q$ from the other. If there are still equal ones among the $n$ numbers, repeat this procedure. Prove that after a finite number of steps all $n$ numbers will be distinct.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović

Typed in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa
www.imomath.com

