Eötvös Mathematical Competition 1899

1. The points $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$ divide a unit circle into five equal parts. Prove that the chords $A_{0} A_{1}$ and $A_{0} A_{2}$ satisfy $\left(A_{0} A_{1} \cdot A_{0} A_{2}\right)^{2}=5$.
2. If x_{1} and x_{2} are the roots of the equation $x^{2}-(a+d) x+a d-b c=0$, show that x_{1}^{3} and x_{2}^{3} are the roots of

$$
y^{2}-\left(a^{3}+d^{3}+3 a b c+3 b c d\right) y+(a d-b c)^{3}=0
$$

3. Prove that $A=2903^{n}-803^{n}-464^{n}+261^{n}$ is divisible by 1897 for any natural number n.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu
Typed in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa

