Eötvös Mathematical Competition 1899

- 1. The points A_0, A_1, A_2, A_3, A_4 divide a unit circle into five equal parts. Prove that the chords A_0A_1 and A_0A_2 satisfy $(A_0A_1 \cdot A_0A_2)^2 = 5$.
- 2. If x_1 and x_2 are the roots of the equation $x^2 (a + d)x + ad bc = 0$, show that x_1^3 and x_2^3 are the roots of

 $y^{2} - (a^{3} + d^{3} + 3abc + 3bcd)y + (ad - bc)^{3} = 0.$

3. Prove that $A = 2903^n - 803^n - 464^n + 261^n$ is divisible by 1897 for any natural number n.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu Typed in IAT_FX by Ercole Suppa

1