Hungarian Mathematical Olympiad 1998/99

Final Round

Grades 11 and 12

1. Find all solutions $0<x, y, z \leq 1$ of the equation

$$
\frac{x}{1+y+z x}+\frac{y}{1+z+x y}+\frac{z}{1+x+y z}=\frac{3}{x+y+z} .
$$

2. The midpoints of the edges of a tetrahedron are on a unit sphere. What is the maximum possible volume of the tetrahedron?
3. Positive integers are written in the fields of an $n^{2} \times n^{2}$ chessboard such that the difference of any two edge neighbors is at most n. Prove that there is a number that occurs in at least $[n / 2]+1$ fields.

Grades 11 and 12 - specialized math classes

1. Let $n>1$ be a real number and k be the number of positive primes not exceeding n. Suppose that $k+1$ positive integers are taken such that none of them divides the product of the others. Prove that one of these $k+1$ integers is greater than n.
2. The polynomial $x^{4}-2 x^{2}+a x+b$ has four distinct real roots. Show that the absolute value of every root is smaller than $\sqrt{3}$.
3. Each side of a convex polygon has an integer length, and the perimeter is odd. Prove that its area is at least $\sqrt{3} / 4$.

The IMO Compendium Group,
D. Djukić, V. Janković, I. Matić, N. Petrović

Typed in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ by Ercole Suppa
www.imo.org.yu

