7-th Indian Mathematical Olympiad 1992

- 1. In a triangle *ABC*, $\angle A = 2 \angle B$. Prove that $a^2 = b(b+c)$.
- 2. If real numbers *x*, *y*, *z* satisfy x + y + z = 4 and $x^2 + y^2 + z^2 = 6$, show that each of *x*, *y*, *z* lies in the segment $\begin{bmatrix} 2\\3\\2 \end{bmatrix}$. Can *x* attain either of the endpoints of the segment?
- 3. Determine the remainder of 19^{92} upon division by 92.
- 4. Find the number of permutations (p_1, \ldots, p_6) of $1, 2, \ldots, 6$ such that for any k, $1 \le k \le 5$, (p_1, \ldots, p_k) does not form a permutation of $1, 2, \ldots, k$.
- 5. Two circles C_1 and C_2 in the plane meet at points P and $Q \neq P$. A line through P meets C_1 at A and C_2 at B. Let Y be the midpoint of AB and let QY meet the circles C_1 and C_2 again at X and Z respectively. Show that Y is the midpoint of XZ.
- 6. Let f(x) be a polynomial with integer coefficients such that there exist distinct integers a_1, \ldots, a_5 at which f takes the value 2. Show that there does not exist an integer b with f(b) = 9.
- 7. For each integer $n \ge 3$, find the number of ways in which one can place the numbers $1, 2, ..., n^2$ in the squares of an $n \times n$ chessboard (one on each) such that the numbers in each row and in each column form an arithmetic progression.
- 8. Find all pairs (m,n) of positive integers for which $2^m + 3^n$ is a perfect square.
- 9. Find *n* such that in a regular *n*-gon $A_1A_2...A_n$ we have

$$\frac{1}{A_1 A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_1 A_4}$$

10. Determine all functions $f : \mathbb{R} \setminus [0,1] \to \mathbb{R}$ such that for all *x*,

$$f(x) + f\left(\frac{1}{1-x}\right) = \frac{2(1-2x)}{x(1-x)}$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1