10-th Indian Mathematical Olympiad 1995

- 1. In an acute-angled triangle ABC with $\angle A = 30^{\circ}$, H is the orthocenter and M the midpoint of BC. Point T is symmetric to H with respect to M. Show that AT = 2BC.
- 2. Show that there are infinitely many pairs (a,b) of coprime integers such that both the quadratic equations $x^2 + ax + b = 0$ and $x^2 + 2ax + b = 0$ have integer roots.
- 3. Show that the number of three-element subsets $\{a,b,c\}$ of $\{1,2,\ldots,63\}$ with a+b+c < 95 is less than the number of those with a+b+c > 95.
- 4. Let Γ' be the circle lying inside a triangle *ABC* and touching the sides *AB* and *AC* and the incircle Γ of the triangle externally. Show that the ratio of the radii of the circles Γ' and Γ equals $\tan^2 \frac{\pi \alpha}{4}$.
- 5. The real numbers $a_1, a_2, ..., a_n$ are all greater than 1 and satisfy $|a_k a_{k+1}| < 1$ for $1 \le k \le n-1$. Prove that

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} < 2n - 1.$$

6. Find all primes p for which $\frac{2^{p-1}-1}{p}$ is a perfect square.

1