11-th Indian Mathematical Olympiad 1996

- (a) Show that, for any positive integer *n*, there exist distinct positive integers *x* and *y* such that *x* + *j* divides *y* + *j* for *j* = 1,2,...,*n*.
 - (b) If for some positive integers x and y, x + j divides y + j for all positive integers j, show that x = y.
- 2. Let C_1 and C_2 be two concentric circles in the plane with radii R and 3R respectively. Show that the orthocenter of any triangle inscribed in C_1 lies in the interior of C_2 . Conversely, show that every point in the interior of C_2 is the orthocenter of some triangle inscribed in C_1 .
- 3. Solve in real numbers a, b, c, d, e the following system of equations:

 $3a = (b+c+d)^3$, $3b = (c+d+e)^3$, $3c = (d+e+a)^3$, $3d = (e+a+b)^3$, $3e = (a+b+c)^3$.

- 4. Find the number of ordered triples (A, B, C) of subsets of a given *n*-element set *X* such that $A \subset B \subsetneq C$.
- 5. The sequence $(a_n)_{n \in \mathbb{N}}$ is defined by $a_1 = 1, a_2 = 2$, and

$$a_{n+2} = 2a_{n+1} - a_n + 2$$
 for $n \ge 1$.

Prove that for any m, $a_m a_{m+1}$ is also a term of the sequence.

6. Given a $2n \times 2n$ array of 0's and 1's containing exactly 3n zeros, show that it is possible to remove all the zeros by deleting some *n* rows and *n* columns.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Ercole Suppa www.imomath.com

1