Indian IMO Team Selection Tests 1994

First Test May 18

- 1. A vector in the coordinate plane initially coinciding with OM_0 rotates about the origin O at a constant speed of $2\pi/n$ radian per second, where $n \in \mathbb{N}$. Let $M_1, M_2, \ldots, M_{n-1}$ be the positions of M_0 at the end of $1, 1+2, \ldots, 1+2+\cdots+$ (n-1) seconds. Determine the set of values of n for which $M_0, M_1, M_2, \ldots, M_{n-1}$ are the vertices of a regular n-gon (in some order).
- 2. Find all functions $f : \mathbb{N} \to \mathbb{N}$ with the following properties:
 - (i) f is strictly increasing;
 - (ii) f(2n) = f(n) + n for each $n \in \mathbb{N}$;
 - (iii) Whenever f(n) is a prime, *n* is a prime;
- 3. Show that the numbers 1,2,3,...,1994 can be colored using 4 colors so that no arithmetic progression of 10 terms has all its members colored the same.
- 4. A nonisosceles trapezium *ABCD* with *AB* \parallel *CD* and *AB* > *CD* possesses an incircle with center *I* which touches *CD* at *E*. Let *M* be the midpoint of *AB* and let *MI* meet *CD* at *F*. Show that DE = FC if and only if AB = 2CD.

Second Test May 21

- Suppose the set Q⁺ is partitioned into three disjoint subsets A, B, C satisfying the conditions BA = B, B² = C, BC = A, where HK stands for the set {hk | h ∈ H, k ∈ K} for any two subsets H, K of Q⁺ and H² stands for HH.
- 2. Show that all positive rational cubes are in A.
- 3. Find such a partition $\mathbb{Q}^+ = A \cup B \cup C$ with the property that for no positive integer $n \leq 34$ are both *n* and n + 1 in *A*; that is,

$$\min\{n \in \mathbb{N} \mid n \in A, n+1 \in A\} > 34.$$

- 4. Find the largest integer $n \le 1994$ for which 2^{10} divides $\binom{4n}{n}$.
- 5. Show that there are infinitely many polynomials *P* with integer coefficients such that P(0) = 0 and $P(x^2 1) = P(x)^2 1$.
- 6. In the triangle *ABC*, let *D*, *E* be points on the side *BC* such that $\angle BAD = \angle CAE$. If *M*, *N* are, respectively, the points of tangency with *BC* of the incircles of the triangles *ABD* and *ACE*, show that

$$\frac{1}{MB} + \frac{1}{MD} = \frac{1}{NC} + \frac{1}{NE}$$

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Ercole Suppa www.imomath.com

Third Test May 25

- 1. Let *ABCD* be a convex quadrilateral such that the internal angle bisectors of the four angles of the quadrilateral form a nondegenerate convex quadrilateral *PQRS*. Prove that the Euler circles of the triangles *QRS*, *RSP*, *SPQ*, *PQR* have a point in common.
- 2. Suppose that \mathscr{F} is a family of *k*-element subsets of a 2*k*-element set *X* such that each (k-1)-element subset of *X* is contained precisely in one member of \mathscr{F} . Show that k+1 is a prime number.
- 3. Let a_k and b_k , $1 \le k \le n$, be positive real numbers. Show that

$$\sqrt[n]{a_1a_2\cdots a_n} + \sqrt[n]{b_1b_2\cdots b_n} \le \sqrt[n]{(a_1+b_1)(a_2+b_2)\cdots (a_n+b_n)}$$

4. Two distinct real numbers *a* and *b* are such that $a^n - b^n$ is an integer for each n = 1, 2, ... Show that *a* and *b* are themselves integers.

Fourth Test May 28

- 1. In triangle *ABC* with AB = AC, *D* is the foot of the altitude from *C*, *E* the midpoint of *CD*, and *F* the foot of the perpendicular from *A* to *BE*. Let *K* be the foot of the perpendicular from *A* to *CF*. Prove that $AK \le \frac{1}{3}AB$.
- 2. Find all positive integers *n* for which there exists a permutation $(a_1, a_2, ..., a_n)$ of 1, 2, ..., n such that *i* divides $a_1 + a_2 + \cdots + a_i$ for each *i*, $1 \le i \le n$.
- 3. Show that in any sequence of length 2^n of *n* symbols a_1, a_2, \ldots, a_n there exists a block in which each symbol occurs an even number (possibly zero) times. Furthermore, show that this conclusion in not necessarily true for a sequence of length $2^n 1$.
- 4. A person starts at the origin and makes a sequence of moves along the real axis with *k*-th move being a change of +k or -k.
 - (a) Prove that the person can reach any integer.
 - (b) If M(n) is the least number of moves required to reach a positive integer n, prove that

$$2-\frac{1}{\sqrt{n}} < \frac{M(n)}{\sqrt{n}} < \sqrt{2} + \frac{3}{\sqrt{n}}.$$

Fifth Test May 29

2

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Ercole Suppa www.imomath.com

- 1. The incircle of a triangle *ABC* touches the sides *BC*,*CA*,*AB* at *D*,*E*,*F*, respectively. Let *P* be any point within the incircle and let the segment *AP*,*BP*,*CP* meet the incircle at points *X*,*Y*,*Z*, respectively. Prove that the lines *DX*, *EY*, *FZ* concur.
- 2. A finite set $a_1, a_2, ..., a_n$ of positive integer is called *good* if a_i divide $a_1 + a_2 + \cdots + a_n$ for each i = 1, ..., n. Prove that every finite set of positive integer is contained in some good set.
- 3. If a_1, a_2, \ldots, a_n are positive numbers, prove the inequality

$$\sum_{j=1}^{N} \sqrt[j]{a_1 a_2 \cdots a_j} < 3 \sum_{j=1}^{N} a_j.$$

4. Let N(S) denote the number of subsets of a finite set S (i.e. $N(S) = 2^{|S|}$). Suppose that A, B, C are finite sets with |A| = |B| = 1994 and $N(A) + N(B) + N(C) = N(A \cup B \cup C)$. Determine the minimum positive value of $|A \cap B \cap C|$. Give an instance where this minimum is realized.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović Typed in LATEX by Ercole Suppa www.imomath.com