18-th Iranian Mathematical Olympiad 2000/01

Third Round

Time: 4 hours each day.

First Day

- 1. In an $n \times n$ matrix, a generalized diagonal is a set of n entries, one from each row and column. Let A be a 0, 1-matrix having exactly one generalized diagonal all of whose entries are 1. Prove that one can permute the rows and columns of A to obtain an upper triangular matrix.
- 2. Let O be the circumcenter and N the center of the nine-point circle of a triangle ABC. Let N' be the point such that $\angle N'BA = \angle NBC$ and $\angle N'AB = \angle NAC$. The perpendicular bisector of OA meets BC in A'. Points B' and C' are defined analogously. Prove that A', B', C' line on a line l that is perpendicular to ON'.
- 3. Let A be the set of sequences of integers $(x_1, x_2, ...)$ and let $\phi : A \to \mathbb{Z}$ be a function such that:
 - (i) $\phi(s+t) = \phi(s) + \phi(t)$ for all $s, t \in A$;
 - (ii) $\phi(0, 0, \dots, 1, 0, 0, \dots) = 0.$
 - (a) Prove that $\phi(1, 2, 4, 8, 16, ...) = 0$.
 - (b) Prove that $\phi \equiv 0$.

Second Day

4. Let $n = 2^m + 1$ and $f_1, \ldots, f_n : [0, 1] \to [0, 1]$ be increasing functions that satisfy

 $|f_i(x) - f_i(y)| \le |x - y|$ for all *i* and $x, y \in [0, 1]$,

and $f_i(0) = 0$ for all *i*. Prove that there exist distinct *i*, *j* such that

$$|f_i(x) - f_j(x)| \le \frac{1}{m}$$
 for all $x \in [0, 1]$.

- 5. In a triangle ABC, I and I_a denote the incenter and the excenter corresponding to side BC. Let A' and M respectively be the intersections of II_a with BC and the circumcircle of $\triangle ABC$, let N be the midpoint of arc MBA, and let S, T be the intersection points of rays NI and NI_a with the circumcircle of $\triangle ABC$. Prove that S, T, and A' are collinear.
- 6. By an *n*-variable formula we mean a function of *n* variables x_1, \ldots, x_n that can be expressed as a composition of $\max(a, b, \ldots)$ and $\min(a, b, \ldots)$. Suppose that *P* and *Q* are two *n*-variable formulas such that

$$P(x_1, \ldots, x_n) = Q(x_1, \ldots, x_n)$$
 for all $x_i \in \{0, 1\}$.

Prove that $P \equiv Q$.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imo.org.yu